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This book discusses the calculations for
present-day elastic tensometric elements, and
presents methods for utilizing them. Along with
calculations for strength and rigidity, the
problems of determining the nonlinearity of
certain elastic elements are examined. Great
attention is devoted to the use of statistical
methods for experimentally determining several
parameters characterizing the metrological
properties of elastic elements.

The book is designed for design engineers
and scientists interested in applying tenso-
metric methods to the measurement of forces.
The book may also be used by students in the
related disciplines.
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COMPUTATIONS OF ELASTIC TENSOMETRIC ELEMENTS

G. F. Malikov, A. L. Shneyderman, A. M. Shulemovich

Introduction

Lever systems of mechanical scales and force measuring devices have, along /3%

with high metrological properties, serious drawbacks which make it difficult,

and sometimes impossible, to apply them in many areas of technology. In parti-
cular, they have a large stroke, which makes it impossible to use them in many
devices which are very sensitive to impacts and other mechanical effects, and

they are very cumbersome. Their use frequently makes it impossible to auto-

mate a technological process. It complicates remote control and readout. Ex-
pensive foundations are frequently required under stationary scales, etc.

The development of tensometric force measuring devices has recently been
intensified. These devices have great advantages, as compared with a lever
system of mechanical scales and force measuring devices. At the present time,
there is practically no branch of our national economy in which tensometric
force measuring devices are not employed.

The principle underlying the operation of the tensometric force measuring
device may be most simply clarified with a specific example. Let us investigate
the simplest elastic element representing a column having a circular or a square
cross section, which simply expands or contracts (Figure 1). Strain gauges .y
forming a bridge circuit are applied to the lateral surface of the column.

Under the influence of the load to be measured, the column is deformed together
with the strain gauges. The electric resistance of the strain gauges changes,
and there is a change in the voltage in the measuring diagonal of the bridge.
The load being measured is determined from the magnitude of this voltage change.

The great advantages of the method under consideration can be seen in this
very simple example. A tensometric force measuring device has great rigidity yi
(and a correspondingly small stroke), and is very compact even when designed for
large loads. This makes it possible to install it relatively simply in de-
vices of various types.

Due to the absence of prisms and moving parts, it is not sensitive to im-
pacts and other mechanical effects. A tensometric force measuring device may
be installed in a hermetic container, by means of which it may be completely
insulated from water or oil. It is also possible to employ water cooling and

*Note: Numbers in the margin indicate pagination in the original foreign text.

(1)An extensive amount of literature has been devoted to the problem
of the electric portion of the method under consideration for measuring forces
[see, for example, the studies (Ref. 11, 18) etc.]. -




to use it under very difficult operational conditioms.

The expenses entailed in producing stationary weighing devices is greatly
reduced with the tensometric method. It is not difficult to provide parallel
operation of any amount of tensometric force measuring devices, since their
output electric signals are summed, and indicate the total weight independently
of the position of the center of gravity. The consumption of metal is thus
considerably reduced, since lever systems can contain a large amount of metal.
Without tensometric force measuring devices, it is impossible to automate many
technological processes, especially in the chemical and metallurgical industry.
The direct electric output greatly simplifies the problem of remote control
and recording.

Tensometric force measuring devices are applied in different areas of
technology. Their accuracy has increased so greatly that they have closely
approximated the accuracy of mechanical scales with a lever system. This makes
it possible to apply them successfully almost everywhere, without employing
mechanical scales, as well as in those cases where the utilization of mechanical
scales is impossible. We shall give certain examples for the use of the tenso-
metric method of measuring forces.

Tensometric force measuring devices have been extensively employed in
several branches of industry, particularly in the chemical and metallurgical
industry, for continuous weighing and monitoring.

The tensometric elastic elements in crane scales make it possible to per-
form the processes of weighing and transporting loads at the same time. We
would like to point out that the use of mechanical scales is not excluded in
this case, whereas tensometric elastic elements can be readily installed at any
location on the cranme,

Recently tensometric elastic elements have begun to replace lever systems
in platform scales, which are employed in very diverse branches of the national
economy from hot shops of metallurgical combines to railway transport, where
weighing of moving stock is performed. In the latter case, a whole group of
problems is encountered, connected with an increase in the weighing rate,
recording and totalling the loads, which cannot be solved by employing mechan- /5
ical lever scales.

There are a great many such examples. We shall confine ourselves to one
great advantage of the tensometric method of measuring forces. Mechanical
scales, force measuring devices, and their lever systems are designed, as a rule,
for operating in a specific narrow region of application (for example, commer-
cial scales cannot be employed in any technological process without significant
alteration; a lever system of platform scales cannot be employed for the weigh-
ing platform of other dimensions, etc.). This has produced an enormous amount
of different types of scales and force measuring devices having very diverse
dimensions. With respect to tensometric elastic elements, it is possible to
develop universal standard elastic elements with a differing limiting load,
which can be employed in all branches of industry and may be inserted in very
diverse technological lines without any difficulty.



An elastic element is the basic mechanical part of a tensometric force
measuring device. The requirements imposed on the design of this element are
determined by the metrological properties of scales and force measuring devices,
and are occasionally so great that it is very difficult to satisfy them. Stresses
providing a sufficiently high signal must be present in the elastic element. On
the other hand, it must be rigid in order to produce small displacements and
nonlinearity, which arises when the form does not exceed a permissible amount.

An elastic element must be compact. However, it must have sufficiently large
dimensions in order that the arrangement and mounting of strain gauge elements
is not difficult.

One of the basic requirements imposed on an elastic element is as follows.
It must be insensitive to the influence of a transverse loading component. In
addition, the supports of an elastic element must be such that the stress state
in the zones containing the strain gauge elements does not depend on the method
with which the force is applied.

It is naturally impossible to create a universal structural form of an
elastic element which can satisfy all the numerous, sometimes contradictory,
requirements. Different types of elastic elements must be produced, depending
on the limiting load, their region of application, and on the metrological
requirements.

Thus, the problem of constructing and designing elastic tensometric elements
is transformed into the independent problem of the tensometric method of measur-
ing forces.

It must be emphasized that it is not as difficult to develop elastic 16
elements for large limiting loads as it is for small loads. In the latter case,
they are so small that it is impossible to displace sensing elements with them,
or —- if the structural dimensions are permissible -- they are so large that
significant nonlinearity of the readings takes place. The production of elastic
elements with high metrological properties under small (from several tens of
grams to several kilograms) limiting loads is an immediate problem, and represents
an independent subject for scientific research.

Rigid requirements are imposed upon the material of elastic elements, due
to the high metrological properties of tensometric scales. The material must
satisfy as accurately as possible a linear dependence between the stresses and
deformations since the scales of the devices are usually linear, and nonlinearity
of the material elastic properties occurs as a systematic error. For the same
reason, the material must not have hysteresis. A linear dependence between the
stresses and deformations must be combined with a proportionality limit which
is as high as possible, making it possible to assume high stresses and thus to
increase the sensitivity of the apparatus.

The elastic, tensometric force measuring devices can operate under very
diverse, occasionally quite difficult, thermal conditions. Therefore, the
material from which the elastic element is prepared must provide the smallest
possible change in the modulus of elasticity when the temperature changes.



Summing up the statements presented above, we may say that any imperfection
in the properties of the material appears as an imperfection in the metrological
properties of the tensometric force measuring device.

One of the most widely used types of elastic elements is the column, which
simply elongates or compresses (Figure 1). Figure 2 shows the construction of
force measuring devices in which this elastic element is used. The transverse
cross section of the column may be either circular or square. Different ways
of attaching the end of an elastic element to the body by means of a membrane
are planned, in order to compensate for the transverse component of the external
load. This type of tensometric force measuring device has small nonlinearity,
and may be primarily used for high limiting loads, beginning approximately

at 500Q kgf and above.
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Figure 1. Tensometric Column Figure 2. Elastic Elements of the
Shaft Type:

a - with one membrane; b - with two
The ring is another widely used membranes,

type of elastic element (Figure 3).
It is employed for smaller limiting loads
than the column. In the case of higher loads, a ring having a large curvature
is employed. In the case of smaller loads, the ring has a small curvature,
whereas the curvature of the axial line of these and other beams may be
variable. The transverse cross section may be constant or variable. Just as /7
in the preceding case, a membrane is also used here for decreasing the influence
of the transverse components of the external load which inevitably arise.

Attention should also be called to the construction of elastic elements
which react very little to the transverse component of the load, and also to
the eccentricity of the point of application for the external force. This can
be avoided without compensating membranes.

The element shown in Figure 4 was prepared from a steel tube which was
curved into a toroid. The sensing elements are attached both to the internal
and to the external surface of the tube. This elastic element has several
advantages: it is not very high, it is sufficiently rigid, it reacts very little/8
to the transverse component of the load and to the eccentricity of the point of
application for the external force.
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In all the cases investigated above, strain gauges are attached in
the zones of the greatest stresses. Since the sensing element is attached to
the body of the elastic element by means of an adhesive film which has in-
elastic properties, there is a displacement of the strain gauge with
respect to the body of the elastic element, leading to nonlinearity and hystere-
sis of the readings. In order to avoid this phenomenon which makes the metro-
logical properties of the tensometric force measuring device worse, steel strain
gauges have recently been wound into a spiral, and are not applied at a specific
position. The adhesive film in this case is only employed to fix the position.
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Figure 3. Elastic Element of the Figure 4. Toroidal Elastic Element.
Ring Type.

Figure 5 shows one of the variations of this type of elastic element. It
represents a circular plate with a ring-shaped rib. This plate is built into
the edge and has a rigid central portion, to which the external load is applied.
A strain gauge is wound onto the ring-shaped rib. Under the influence
of an external force, which we shall assume is directed downwards, the plate
undergoes deformation along with the ring-shaped rib. This deformation is
symmetrical with respect to its center. It may thus be readily seen that the
wire, which is mounted onto the lower section of the ring, will be stretched,
and the wire mounted on the upper section of the ring will be compressed. 1In
order to avoid compression of the wire on the upper section of the ring, it
must be wound after preliminary stress. This type of elastic element is usually
employed for average loads (approximately from 500 to 5000 kgf).

For higher limiting loads (up to tens of tons) elastic elements may be
employed which have the form shown in Figure 6. In this element, two cylinders
having a different diameter are combined by means of a ring representing a
beam having a small curvature. When the elastic element is influenced by a /9
compression load, the ring undergoes deformation, which is symmetrical with
respect to its center, in such a way that the transverse cross sections of the
ring turn with respect to their centers of gravity, and the longitudinal fibers
simply elongate or compress. The strain gauges are wound onto the outer
surface of the ring as was done previously, and all statements pertaining to
their operation which were presented in the preceding case remain in force here.



The same principle is employed for
elastic elements designed for small
limiting loads. Figure 7 shows an ele-
ment representing a beam construction
which deflects. The strain gauge
s ) ' is wound onto dowels, which turn

' when the beam is deflected, and the
wires have a supporting function.

Figure 5. Elastic Element in the In conclusion, we would like to
Form of a Circular Plate with a state that for several loads, including
Concentric Rib. small loads, cantilevers having a
constant and variable cross section (in
the latter case, they are beams having
the same resistance) with sensing elements attached to them (Figure 8) are very
widely employed.
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Figure 6. Elastic Element in the
Form of a Body of Rotation.

Very few articles have been
published which are devoted to
designing elastic tensometric
elements and which take into account
certain requirements imposed upon them.
We are not including the widely known
works on the design of elements having the
simplest form which are employed as elastic elements (for example, rings, beams,
etc.). Most of the literature is descriptive in nature. /10

Figure 7. Elastic Element Designed
to Measure Small Loads.

The special features entailed in designing elastic elements are most clearly
apparent when nonlinearity is taken into account. The works of Dyatlov, V. Ya.
Migdzinskiy, Ye. P. Popova (Ref. 13), P.I. Semenova, A.M. Frakter have been
devoted to designing elastic systems with allowance for nonlinearity. These
studies primarily investigate the flexible elements of instrument manufacture
parts, whose nonlinearity is so great that it cannot be disregarded.



With respect to elastic tensometric elements, the nonlinearity for them
leads to the so-called systematic error. If the fact is taken into account that
the permissible limiting error of scales or of a force measuring device is
sometimes so small that it does not exceed 0.1 or 0.05%, it is then clear that
we must take into account nonlinearity even in those rigid systems which are
usually regarded -as linear.
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Figure 8. Elastic Elements of the Cantilever Type.
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In this connection, we would like to point out the following. It is
impossible to characterize the nonlinearity by the first nonlinear expansion
term, as is customarily done, since the actual error caused by the nonlinearity
is many times less. This may be explained by the fact that the control of
scales or a force measuring device leads to the fact that the systematic error
is either minimal, or is close to being minimal., Therefore, it is natural to
characterize the nonlinearity by the magnitude of the largest deviation of the

nonlinear relationship from the linear dependence, under the condition that the
best approximation is made.

Since the accuracy of tensometric scales is very high at the present time,
the development of tensometric force measuring devices tends primarily toward
searching for the optimum forms of elastic elements with the highest possible
metrological properties. As a rule, this leads to complication of the construc-
tion of the elastic elements. Naturally, under these conditions the role of
calculations is greatly increased.



Chapter 1
SENSITIVITY, RIGIDITY, AND STRENGTH OF ELASTIC ELEMENTS

The selection of efficient dimensions and form of an elastic element /11
represents one of the fundamental problems in designing a force measuring device.
The stress at the location where the strain gauge is glued on or is wound on
must provide a high signal, and consequently sufficient sensitivity(l) of the
elastic element, The stress cannot exceed the yield point at any location on
the elastic element, i.e., it must provide the requisite reserve of strength.

The elastic element must have as much rigidity as possible, since -— when
built in to any device -- it must mot disturb its operation. In, additiomn, all
other conditions being equal, the more rigid is the elastic element, the better
are its metrological properties.

This indicates that special attention must be given to designing for strength
and rigidity of elastic elements. The requirements imposed on the accuracy of
these designs cannot exceed those which are customarily imposed on designs for
machine construction , particularly due to the fact that the possible control
of sensitivity is usually included in a secondary device. Due to this fact,
all the problems presented in this chapter are regarded in the linear formulation.

1. Elastic Elements Representing Shafts which Elongate or
Compress

The operation of this type of elastic element is shown in Figure 1. This
is one of the most widely employed elastic elements, and is customarily used for

high limiting loads.

The calculation of a shaft, which represents the sensitive element of /12
this force measuring device, is extremely simple and is based on the following

formula

I
=5 (1.1)

However, it is practically impossible to provide a uniform stress state,
described by formula (I.1): the point at which the force is applied never lies
strictly on the longitudinal axis of the beam due to unavoidable structural
imperfections, and the direction of influence of the force always makes a
small angle with the beam axis. This leads to the fact that considerable trans-
verse forces and moments arise in elastic elements which elongate or compress.

The strain gauges forming the bridge are fastened and combined in such a

(l)The quantity c = di designates the sensitivity of an elastic element,
dp
where i is any quantity characterizing the signal from the sensing element. In
particular, i may be the magnitude of the deviation of the secondary device in-

dicator.




p=—

way that the secondary device does not react to transverse forces and moments.

For several reasons (inaccurate attachment, a certain difference in the coeffi-
cients of strain semsitivity, etc.), the action of the transverse forces and
moments has an influence upon the reading of the secondary device. This must

be avoided as much as possible, since the stresses caused by these forces —-
combining with the stresses from the tensile (compression) forces —- may introduce
significant errors into the measurement.

The simplest way to decrease the errors consists of employing a hollow
cylinder as the elastic element. This cylinder simply elongates or compresses,
and has the same transverse cross section area as a solid cylinder, but a much
higher moment of resistance. As may be readily seen, other conditions being
equal, the stresses caused by deflection in such an elastic element are consider-
ably less than in a solid cylinder.

Figure 2 shows another method which is more radical, but structurally more
complex than that described above (their concurrent use is not excluded). This
method may be employed in elastic elements. In order to eliminate the stresses
from the transverse forces and moments, the elastic element is mounted in a
rigid housing with one or two membranes having great rigidity under the influence
of force in the membrane plane, and having little rigidity under the influence
of forces and moments deflecting the membrane. Thus, this compensating device
receives a small portion of the measurable stress, almost without changing the
sensitivity of the force measuring device, and almost completely receives the
transverse components of the external stress and moment. A compensating device
with two membranes is particularly efficient. A large number of membranes is
not usually used, since this greatly complicates the manufacture of the elastic
element, and very little additional advantage is gained.

Finally, the influence of the stresses from the transverse forces and /13
moments is compensated by a definite arrangement of the strain gauges forming
the electric bridge on the elastic element. When an elastic element is placed
in a rigid housing, the problem of the efficient construction of the membrane
supports arises. This must be done in such a way that the influence of the trans-
verse forces and moments on the elastic element is as small as possible. The
efficient selection of structural dimensions of force measuring device elements
is investigated in the studies (Ref. 2) and (Ref. 24).

The calculation of force measuring device elements of this type is discussed
below, with certain requisite changes and additions. For this calculation, it
is first necessary to know the rigidity of the membrane forming the basic ele-
ment of the compensating device. 1In addition, the membranes must be designed
for strength.

Thus, we shall begin an examination of compensating devices by calculating
the membranes, representing the. plates, which are loaded by forces and moments
in the center.

Calculation of a Circular Plate Under the Influence of an
Arbitrary System of Forces Applied at the Center




As may be seen from Figure 2, the membranes, which compensate for the
transverse stresses and bending moments, are built in along the edge, have a

solid circular center, and are loaded in the middle -- in the first case, by
two components of the external force, one of which acts in the plane of the

plate, and the other acts perpendicularly to it; in the second case, they are

loaded by the moment.

Let us study the influence of the force in the plane of the plate (Figure

9). Under the influence of the force P, the solid center is displaced by the

direction, and u

L]
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I
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employ the solution

(Ref. 25). We have
expressions for the
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Figure 9. Influence of the Force in where op, OW and t are the stresses

the Plane of the Plate.

the tangential direction.

of the second

the following
stress:

= [@+0 4+ 230+ |eos;

quantity 6. We shall employ up to

designate the displacement of an arbi-
trarily selected point in the radial
to designate it in

We shall

which are customary in the case of a

fundamental problem of elasticity theory

plane stress state; p and ¢ -- coordinates

of the point in the polar coordinate system.

The quantities A, o and B have the following form:

Ao ¥wGEHRY 4
(4 R n - — (R3—r) RS
—-— R
po— R,

where G is the modulus of elasticity of the second kind.

The quantity k is as follows in the case of the plane stress state

3—v
* = N
14w
and is the following in the case of plane deformation
2r=3—4y,

where v is the Poisson coefficient.

Let us write the expressions for the displacements

10

(1.3)

/14
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The quantity &8 is contained in all the expressions given above for the /15

stresses and displacements. Dividing it by the force P, we obtain the value
which will be necessary later for the pliability of the elastic system, i.e.,
the displacement from the unit force which is in operation in the direction of
the force P,

A= (1.4)

We may determine the quantity §
from the equilibrium condition. of the
solid central section. Let us separate
the central section having the radius
r, let us discard the external section
of the plate, and let us replace the
influence of the discarded section on
the remaining section by the forces
which in this case represent the stresses
op and T distributed over the cylindrical

P
surface having the radius r (Figure 10).
In this case, the differential of the
Figure 10. Equilibrium of the force P has the following form:
Element Separated from the Plate. dP — adF - cos b —< - dF - sin .

Substituting the expressions (I.2)
for cp and 1 and integrating over the

entire cylindrical cross section, we obtain

P=—2'ﬁhak(r2_l_R2)(l+x)’ (I-S)
where
k= , >
22 o R )
%2 (24 R%) In—~ — (R*—r?)
We thus find the quantity §

s P . R R?—r2
5 _Px__ R R .
224G (1 + =) l]n r %2 (R? 4 r?) ] o

11



Substituting this expression for § in formula (I.2) and taking into account
the values of the coefficients A, a and B, we finally obtain

P [2R_ %
’ 2h 2+ R?) (1 + %) [ °
— 24 24 Ry cosys
= P 2r2R? 6 1—=x
oy = 2nh(,,+Rz)(1’_;__xjf[ L) +—§+-P—(r2+R2)]c0§tp; (L.7)
=-—-—___Pi.¢ R . %ZRZ_&_ d—a .
TR+ | T R)]sng.

In conclusion, let us write the expression for determining the displace- /16
ment of the center of the membrane § under the influence of a unit force, which
we will need later on. Substituting equation (I.3) in formula (I.6) and setting
P = 1, we obtain

g_=l_(3—'v)<1+v)_ x[m-R (1%)2. R-,_,,] 60

Eh 4 r\3v) TmRin

The second component of the external force, which has an influence perpen-
dicular to the plane of the plate, deflects it. The calculational diagram is
shown in Figure 1l. The solution of this problem is well known [see, for example,
the study (Ref. 16)]. We shall present the fundamental formulas without the
derivation.

M
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Figure 11. Influence of the Force
Applied at the Center Perpendicularly
to the Plane of the Plate.

The maximum deflection may

gilgszizmlgigmiizordlng to the Figure 12. Influence of the Moment
& Applied at the Center of the Plate.
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The largest radial and tangential bending moments (in the case p = r) have
the following form

(1.9)

12
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Let us now investigate in greater detail the case of deflection of the
plate by a moment applied at the middle of the rigid center, (1) This problem

may be solved most simply by the Clebsch method. Let us write the solution in
the form of the following series

v=Ro+2R;nCOquJ+2R,’nsinmq,' (1.10)
m=1 m=1

In our case, the boundary conditions have the following form

for p = r the displacement v::vocos¢, _glzz

for p = R the displacement v=0, — =0.

It is apparent that only one term of the series (I.10), containing the
cosine and the corresponding value m = 1, satisfies these boundary conditions

v = R, cos . (I.1D1)

In order to determine Rl’ we have the well known differential equation for

deflection of a plate

’ g 1 a 1 8%\ /d% 1 do 1 a%
Ge T o T W)(ap“L C a_p“LFW)—O'

Substituting expression (I.11) and performing integration, we obtain
1
U= (Clp.—l- Cop¥ + Cq - +Cpln p) cos §. (1.12)

In order to determine the four arbitrary constants Cl’ C2’ C3 and CA’ we
have four conditions at the boundaries of the plate:
Ci-m—p, P—R)Y+2(R24-r)In R

1,” "~ 1]

9 [(R2 —1?) + (R*+ ) In '7]

C Y .
2= r »
o[ (R2—rt) + (R + ) T |
Ca == vo R’ ! P ;
2[R =)+ Ry 10 |
C4 =Ty R2+r’

rl@ =+ @ty

@ This problem has been studied by several authors -- for example, F.M.
Dimentberg ("Vestnik Inzhenerov i Tekhnikov', No. 7, 1938), H. Reissner
("Ingenieur-Archiv", No. 1, 1929).
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Substituting these values in formula (I.12), we obtain /18
U= Yo _ ‘[(Rz'l-fz)Pln—;;—l—
r|(R?— 2 2) In —
[( ‘f’)+(R +r?)In R] . (1.13)
R LA IV il SHPO 2
2 o 2 P 2 cos §.

We may find the expression for Yo from the equilibrium equation of the
rigid section of the plate (more detailed computations are given in the study
of F. M. Dimentberg; see the reference-on page 1l3). The final result has the

£ -
following form —W[(Rz—rz)—(R2+r2)ln§]
Vo = - M.
ER3
mg.n(Rz_}_,z) (1-14)
The angle of rotation of the rigid section equals
6=-2 .
9 ° (1.15)

In order to obtain the compliance of the plate -— if by compliance we mean
the angle of rotation of the rigid section under the influence of a unit moment
in this case -- we must divide this value of & by the magnitude of the moment
M

__1 30— (]ni— R’—r')
Eh? = r Repr2r /' (1.16)

The values of the radial Mp and the tangential Mw bending moments may be
determined according to the following formulas:

M Rkt g

P 4 (R 1) [(H_y) P @G +p+
+(1—v) R’P;'z]cosq);
' (I.19

M R4 r8 »
My=—F"-1( —xr —
M 47 (R2 - r?) [( +) P (1+3v)p
R2.r2
— (11— s ]cos?.
Elastic Element having Constant Cross Section. with Two Membranes
The force measuring device element shown in Figure 13 consists of the
housing 3, the shaft-like elastic element 4, and the jacket 5 with the membranes
1 and 2. The transverse stress Pe and the moment Me influence the force
measuring device element. Figure 14 shows an equivalent diagram of the jacket
of the force measuring device element, and Figure 15 presents the calculational
diagram of the elastic element.
This construction is statically indeterminate. The force factors Pe’ M, /20

X, and X, (Figure 14) influence the jacket 5 with the membranes 1 and 2, Let

14
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)

n s/\ ['d
7/ I O 7] )
/ ' = fe > e
7 o 119
K g o+ o
Figure 13. Force Measuring Element Figure 14, Equivalent Diagram of
with Two Membranes. Compensating Device.

us investigate the influence of the force Pe separately. Let us employ Al and
A2 to designate the vertical displacements of the membranes under the influence
of this force. Let Pl’ PZ’ M1 and Mz‘be the corresponding reactive forces and

moments in operation in the supporting membranes.

Under the influence of the force Pe’ both membranes and the jacket are

deformed, with the exception of the section gs, which may be assumed to be
absolutely rigid with a great degree of accuracy. After examining Figure 16
and employing letter c to designate the coordinate of the point, with respect
to which rotation occurs, we can readily see that the angles of rotation of

membranes 1 and 2 -- formed by the elastic line with the initial axis qw --
equal the following, respectively
6 =2,

I.18
e . Al Pza’ ( )
2 [t SN - vl

c 2FEJ °

In these expressions, deformation of the section ns is taken into account.
On the other hand, we have )
6, = M9, }

0, = M,9,, (1.19)

where (91 and J , are the angular displacements of membranes 1 and 2, respectively,
under the influence of the unit moment. These quantities may be determined by
formula (I.16).

Equating formulas (I.18) and (I.19), we obtain the following expressions
for the moments in operation in the supporting membranes:

M =M. (I.20)

-9’
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My—_° 26T (1.20)
where EJ is the jacket rigidity.

Let us determine the quantities contained in equation (I.20). Based on
the similarity of the triangles (Figure 16), we readily find

following relationships

A1=p1.sl;} A i

Ay =P, -8, (1.22)

o A -1
Pua® I.21
y(l A Ay 3ES ( )
by,
— 2 Eﬂ” 4?? ff&
[ SN :
=~ v —]
Figure 15. Equivalent Diagram of & P 'E
the Elastic Element. ‘A s M/ e
\!L,/M: A i‘il
The vertical displacements l ‘—ff—ﬂ Py
Al and A2 are determined by the |
]
I

Figure 16. Diagram of the Stress of
where 6, and 62 are the gompliances the Compensating Device. /21

of membranes 1 and 2 under the
influence of the force lying in the plane of the membrane. These quantities
may be expressed by the formula (I.6').

Substituting equations (I.21) and (I.22) in expression (I.20) and perform-
ing certain simplifications, we obtain

1 Py, a3
M —_ —_— . ! . D 2 .
1 1.4, (P1 al_f_Pz 9 -+ 3ES ).
1.23)
1 N Pyas Pya?l (
M —_— .0 . ! 2 I
2y, (P‘ 1+Pa3 3EJ  -2EJ )

We can readily obtain the reactive forces P1 and P2 (see Figure 16) from

the equilibrium conditions of the jacket:

! . as 1 - as a?l \
I4d+ (o2+ )+ (a I
_ 1.9 320 ) T 8, \ T 3ET T ey )
P,=pP ! — 2 - =3 (1.24)

ad a azl—)

e 1 1
14— (8,43 LY (TN _
T, ( ‘+°2+3151)+1.s2 (°‘+°2+ 3EJ  2EJ

16



P,—P

e 1
i

3 3
d—.—L1._ "2
% 1.8

3\

1
+E(BI+6

a
2+ 3pr T 2Es

3

a?l

)

(1.24)

Utilizing expression (1.24), we may write the reactive moments (I.23) in
the following form

: H’zsl (l_;—:—SEaJSB +2;JZ,)+
a8
M, %%‘ (l+ + BER, ) :
: L4 = (3 bt gpr ) +
+z.la, (\B“”’*“PsTsf 21:3) )
N
$,a% 3 2,
a= ‘l’p'zl 315:H2EJ]+d(l+ T 3;J61 - 22.;5,)
T z+—(o,+o,+¥;)+
1 2
[ +1-—ak 3EJ 2353)

For real elastic elements, tHe last two terms in the numerator and denominator

of expressions (I.24) are 100 times smaller than the quantities & and d, as

numerical calculations illustrate.

following expressions for reactive forces

P,=PR

I’
Disregarding these terms, we obtain the

{

14d .

P,,:Pé%.

122

(1.26)

It thus follows that in engineering calculations this type of complex

eonstruction may be replaced by a hinged beam having a variable cross section
(Figure 17).

(I.26).

force Xl and the moments X, and M .

Thus, the support reactions may be determined by expressions

Formulas similar to equations (I.24) and (I.25) may be obtained for the

2

plle.i

l

Based on the same considerations, the
reactions due to these forces and moments may be determined from the computa-
tional diagram shown in Figure 17

i Pa=X;

l—a .
?

P1=—"P2=X2~i—;

P,

—P,:-Me%,

(1.27)

17



LU

In order to determine the deflection and angle of rotation at the point s
where the sensitive element is connected with the compensating device, we may

employ the principle of superposition. The displacements and angles of rota-
tion of such a hinged beam at the point s due to the influence of the loads

Pe? Xl’ X2 and Me’ respectively, may be determined by the following expressions,

with allowance for the compliance gf the supporta:

s — l4-d }
Up = —P, “[(l+d)61+d aﬂL3Ej]+Pe " by
epe——'——[(z+d>8 +dby 2

=X, 1 [(z—a)a —apy + 232 ]+X1—61,

8y = [(t—a)s —a- 8+ "—”’“’],.

3EJ

)—"Xﬁ'jf;

%ﬁ?xl—a(l+

O =7 (6 1o 351)
3

t.JM ;—Mel_a(%—l—‘)z‘l‘“’—) Me,l_;

3EJ

3EJ

S ——"

3EJ)

The total deflection and angle of rotation at the point s have the follow-

ing form:
AL (SRR ]
XSt B 2 [e—an—a, 1 500
+ %[5 (3‘+°” QHESJ)"%“L
_;_M[%L—l_a 351) ;
30— llfe[ 3E.I ]+
__r(l—a)ﬁ —a-d +(l 3;.)10 ]+
(3 + 3 351) m ( 351) J

Let us determine the displacement and angle of rotation.at the same point
8 of an elastic element due to the influence of the force Xl and the moment X,:

8 2
v=—X X ;
1 8E s A 2FJys ’l

18

(1.28)

(1.29)

(I.30)
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2E s 2B’ (1.30)

2
0—X, 1 X, "

where EJKS is the rigidity of the elastic element in the case of deflection,

and 21 is its 1length.

Based on the compatibility of the displacements of the jacket and the
elastic element at the point s, we may determine the unknown force X; and the
moment X, , equating the expressions (I.29) and (I.30), respectively, 'and solving

the equations obtained concurrently. Without any loss to the computational
accuracy, we may perform certain simplifications, employing the fact that the
rigidity of the jacket with the membranes uynder the influence of the force fact-
ors X1 and X2'significant1y exceeds the rigidity of the elastic element under the

influence of the same factors X1 and XZ' [24

In other words, the following inequalities hold

L= J—
3EJ“ >>—— 8, + a[(l——a)a — ad, _I_(l_%‘g]’ |
l—g Y
- ({—a)as
2EJ > [(l_a) 8, —ab, + 3Z‘Ja ],
K>>?(*+ 3151)

On the basis of inequalities (I.31), we may write the condition for compati-
bility of deformation and angles of rotation at the point s in the following

o Pe{’_"[(t+d)61+d 8+ ’””]—”;"

3
[—a a3 3 i
+ M [ ( 0 ) —_ ———] = X ! —
(Tt 1 YT
12

—IY —l—'
2 2EJK5 ’ (1032)
Py T s o da3 Mg
f[(l+d)°1+d°1+3—gl]+ (°1+82+
2 1

=X ! X .
1 9F A Elys )

3EJ )

The solution of system (I.32) yields the desired values of the force X1 and

the moment Xz

19



—p 12k [t d)3, - do ]
e Buta? {( )(+a+ Mt 2+3El
12EJ,s
—(t+a)t+a+du}+ M, P
1
AT @\ _ ¢t a]-
x[(¢+ =) ) ]
12EJ A
X,= P xs ——[t a+ d)d, + (1.33)
e———“ﬂ)g ( e +ata
a3 ;_¢+@a+a+@m M 12EJ s
+ b+ 351] 2 + Ci2¢+a?
t tta
X[(TJF )(‘+ 351) 2 8‘]'
where t = £ - a (see Figure 16).
X 3 ,mmmm]
P h , 5 | Mg
\/Xz Ma=Xp=Xyly
Figure 18. Diagram of Bending Moments

Fipure 17. Simplified Diagram of

the Compensating Device. of an Elastic Element.

Figure 18 shows a diagram of the bending moments of an elastic element
due to the influence of the force Xl and the moment X, A resistance strain

gauge is glued on at the place where the bending moment equals zero. The ex-
pression for the bending moment has the following form
M, =X,— X, .x, (1.34)

where the lever arm x is read from the free end of the elastic element (see

Figures 15, 18).

X
0 in the case x = Eg-. When there is no
1

external moment M_ expressions (I.33) assume the following. form

We thus readily find that Mx =

12EJ !
X=P-—¢{(t —‘)[t a+d)d, +
=P g WA
+ b, | — (o)t +at A
R YTN ‘}’
_ 12 EJys X ' 1.33")
X_P———{——, 4.)[: a+d)s (
R g gttt dht
da* ] @4a(t+atady
5 —
Tt 5 2 } J
Let us investigate a numerical example. let a=4cmy d=2cm, £ =9 cm,
121 « 10%gf cm2; EJ, _ = 4 - 10%gf em2; §; = 0.72 - 1076 cmfegs;

11 6 cm, EJ =

20



§. = 0.944 - 107° cm/kgf; P = 3000 kgf; M_ = 0.

2
We may determine X, = 82.3 kgf and X, = 4.99 kgf from equations (I.33').

1

Figure 19 shows graphs presenting the change in the end moments M, and MB as

a function of the jacket length a.

Let us determine what portion of the external moment Ped belongs to the

elastic moment.

max M, 499
= ==0,08,
Py-d 3000 - 2 T

i.e., this portion is small.

When this type of elastic element is designed, it is of great interest to
select the optimum value of the qualtity a. As was indicated above, a strain
gauge is usually glued on in such a way that its middle coincides with the
elastic element cross section in which the bending moment equals zero. In
theoretical terms, the signal from the strain gauge, produced by the action of
the bending moment, must equal zero. However, in practice, due to imperfect
mounting and several other reasons, the secondary device reacts to the influence/26
of the bending moment. Thus, we must attempt to see that the stresses arising
from the influence of the bending moment are minimal in terms of absolute magni-
tude, under the condition that the cross section in which the bending moment
equals zero coincides with the middle of the strain gauge which is glued on.
This requirement leads to a minimum angle of inclination for the curve of the
bending moments, under the condition that the point at which the bending moment
equals zero lies within a definite interval, i.e., under the following con-
dition 4

3 X As
b T>Z>T' (1.35)

where AB is the base length of the strain gauge.

M 3
57)00kgf r

3000 -

1000 \\
Ma=Xe- X1 4y
o e I —
274 6 & @ 2 f f5 acm
1000} 7 Ma=Xe

4

3000

Figure 19. Graph Showing the Change in the End Moments
MA and MB
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In addition, the following condition must be satisfied based on structural
considerations

a<l,. (1.36)

Conditions (I.35) and (I.36) enable us to find the interval of values for
a within which the angle of inclination for the curve of the bending moments is
minimal. It may be readily established that this problem may be reduced to

finding the minimum [ Xl | in the interval of values for a determined by means

of conditions (I.35) and (I.36).

For the given numerical example, condition (I.35) will have the following
form if we set A3 = 3 cm:

4.5 cm> X2 > 1.5 cm,
X1
from which we approximately find /27
— 1,92 em<a < 10,7 cm.
Taking condition (I.36) into account, we finally obtain the interval of
changes in the values of a
—~1.92 ecn a6 cm.

Let us find the minimum | X For this purpose, let us differentia/te

1l

equation (I.33') for X1 with respect to a, and let us set the equation obtained
equal to zero. .
@pdtar— gy (i 4\,
a - A
. 2
' (1.37)
_ 3B, 2ty 4o detl) |
d 51 1 N
: t+ 5

For our example, the discriminant of the equation is greater than zero.
Consequently, the equation has only one real root which equals 10.36 cm. Based
on the positive sign of the second derivative, we can see that we have found
the minimum. Since the value obtained does not lie within the interval of
changes in a, the minimum value may be written at the ends of the interval.
Performing calculations, we find: in the case a = - 1.92 cm, the force X1 =

= 7100 kgf; in the case X, = 7100 kgf, the force X, = 85.4 kgf.

1 1

Consequently, we may select the length of the jacketa as a little less
than 6 cm.

"In-a similar way, we may solve the problem regarding the optimum value of
the quantity a2 when the moment Me influences the elastic element, in addition
to the force Pe. The cubic equation, detérmining the optimum value of a for

‘the minimum of X., has the following form in this case

1,

22



g4 @) g MEIes g EJ(fﬁxs’a,—:ws—_ﬂh&=o, (1.37")
where 2 A

_._A"_c_' m2=l+-—d——;

Py t+—12—1—
wg= (£ -+ d) 3 - d - 8y
o = 231 + ————26211 ;
t o _
2

A
3(t+—2‘—)

Elastic Elements Having Constant Cross Section with One Membrane /28

This type of force measuring element (Figure 20) consists of the housing
1, the shaft-like elastic element 2, and the membranes 4 with a central rigid
In terms of its construction, this element is simpler than the
However, the compensation of the transverse forces and moments
Just as in the preceding case, this construction is

section 3.
preceding element.
is less effective here.

statically indeterminate.

Figure 21 shows an equivalent diagram of a membrame with a central rigid
section. The calculational diagram of the elastic element is the same as in the
case of two membranes (see Figure 15).

MY

D

w
|
|
]

S \nl
»

2]
Bl
)~
-]

P v |

|
% «;77‘ yh ‘}_.__ N)

/.
4

T
,¢.a-—'-(—- d

N | T

Figure 20, Force Measuring Element Figure 21, Equivalent Diagram of
with One Membrane. Membrane with Central Rigid Section.

’
[l =%

The vertical displacement A of the central rigid section at the point s

equals .
A=A, 1 a6, (1.38)
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where Al is a displacement of the membrane from the influence of the forces in

its plane
= (P 4+ X,)8,
(Pt %) (1.39)
§ is the compliance of the membrane under the influence of the force lying
in its plane. The quantity § may be determined by the expression (I.6').

The angle of rotation of the central rigid section equals
0= (Xe+X,—Pgd—M)9, (1.40)

where ¢ 1s the angular compliance of the membrane. It may be determined by
expression (I.16).

The displacement and angle of rotation of the elastic element at the point
s may be calculated from formulas (I.30).

Let us compile the condition of compatibility for the displacements and
angles of rotation at the point s of the elastic element and the membrane:

P, (3 —ad®) — Mad + X, (b + a%) + X,a9 =

3 2
=X, L

T
— P gd— M- %+ X,a9 + X0 =
l2 .
— X1 1 . X2 ll .
9F /. Edes J

SEJ“
(I.41)

Solving system (I.41) with respect to the unknowns X, and X,, we obtain

1 2
12
Pé[(ad8 —3) ( + 9) 1 db ( 2B —as)] +
A i )]
X, = +ME'8[“(EJ“ “)“L( %y

- »

(i o) (i )~ e o)
2. —_ —_— -
3Es, T (EJKS + ) (21.% @

3 2 (1.42)
T i
2 — —ad
’é[ds(smm +B+”)+("‘” b’(2 Elvs ° )]+
13 ( 2 \
§ —ad
X + M [( 3L, 0T )+a %l )]
= 8 Lo i 2
) - —)
(3151,“ TS e, T %l )
In practice, the following inequalities always hold
29 1 §;
SEst >+ .
2 5. (I.43)
2EJK3 >a
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Therefore, expressions (I.42) may be simplified:

Pe[(ada__a) (— ! + )—I—d&) i ]-1- ]
Eles 9E s
+M a[a h s) 4 ]
& ( T LT T
R § 2
s (2 ) “( 2Bl _“”)

2

(S

(1.44) /30

P [ds i da' 4 ] a[’ i i
—3 )
e|” 3es,, 'H“ ) 2Eus | T | sEr, T 2Er,

ll ) ll ( [f . )2
- $) — —ab
3l (EJN + ) ok, ¢

g =

It may be seen from expressions (I.43) and (I.44) that, in order to decrease
the force factors acting upon the elastic elements it is necessary to decrease
the size d of the central rigid section of the membranes, and to increase as
much as possible the length of the elastic element 21.

Just as previously, the position at which the resistance strain gauges
are glued on {g determined from Mx = 0. The bending moment may be calculated

according to formula (I.34). With allowance for expressions (I.34), we may find
the coordinate of the position at which the strain gauge is pasted on

x=X2

& st g Jemal o]
. el 8k — )251 + M@ 3EJes GoEI,
[( d3 ( h a) a’ i ] .
=N YRt (1.45)
g q ]
— 8 —
+Me&[ (E Jxs ) 2E-’xs

Let us investigate a numerical example. Let us set R = 6.0 cm, R1 = 1.5 cm,

r=1.46 cm, a=1.0 cm, d = & .4 cmy, h=0.5cm; 2 =14 cm, § = g—%élbm/kgf,ﬁ =

_ 1. 893 1/kgfem,Jy = 3.02 em", P_ = 2000 kgf,M o

Based on formulas (I.44), we may determine il and izz

Comparing these quantities with the precise values of Xl

178 kgf and X2'=

= 1650 kgf cm, obtained according to formulas (I.42), we can see that the diffe~
rence is insignificant, and consequently formulas (I.44) may be recommended for
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determining the unknowns X1 and X2.

We may determine the position at which the strain gauge is glued on from
expression (I.45)

x = 8,88 cu.

Elastic Element Having Variable Cross Section with One Membrane

In order to decrease the stresses from the transverse loads, the elastic
element is sometimes prepared in the form of a beam having a step cross section.
Figure 22 shows a force measuring element consisting of the housing 1, the
shaft-like elastic element having a step cross section 2, the central rigid /31
section of the membrane 3, and the membrane itself 4.

Just as in the case of a shaft having a constant cross section, we may
readily compile the equations of compatibility which may be used to determine

the unknowns X1 and X2.

7 ,
2] P . A
3 I ‘ & 2 2 % *
b A O o~ . A
%4¢' T — ) i -'_9
M
Yy Yy fle A
/——1, —t—ly—t=a w f——r— fy —
Figure 22. Step Force Measuring Element Figure 23. Equivalent Diagram of
with One Membrane. the Step Elastic Element.

The left hand sides of the equations of compatability are the same as in equations
(I.41). The right hand sides differ somewhat. Let us compare the expression

for deflection and the angle of rotation of an elastic element having a step

cross section at the point s (See Figure 23):

3 ]
- x|_% h (i +215) ( —h  ht3
i ‘[351, + 2EJ hth—s ll—I-ZIz‘) +
: 2 14
X 2 _ . I.46
P . Ak (1.46)
6=X[ Gy b o] x, (g b
Y ers, U eEs VAT : (EJ, +757:)'

The equations of compatibility have the following form
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P_(8—ad¥) — Myad 4 X, (3 + a*8) + Xpad = — )
3 L (4 +2L) I '
—X 2 Al 2 I S e ok
‘[ 3EJ, - 2EJ, (ll'Hz 3 L+, +
X [251 2EJ (ll+2[2)] (1.47)
—Jgd&-M&+Xg-&+X8=
[
— X, |2 L2 ] ).
1[ 2EJ, ( + [2) (EJ, + EJy )
We obtain the following from the system of equations (I.47) /32
li ll
(Pe et —) + M) (1~ 2 4 9) +
1
T L
+ (Bd¥ + M) 2EJ, +H(ll+2lz)"§'a8
X, = : o .
(ot )[z b (), bt
EJ, E.ll 3EJ, . 2EJ, ST A TR
| hh+2) ]2
+B+“23]_[ ks, T ok, %
by (h + 20) Lol 43l (1.48)
2 1 \f1 2. 1" 2
(Bdd +M 8)[35 YA (1+2 3 l+2l,)
. 1o
-]—b-}—a?%] [P (add — )M, aS][ —-a&]
X, = , B . 2E7, 2EJ .
L 2 Lt +2) A L3,
(EJz +Ell +&) [3EJ,+ 2FJ, (l‘+l’ 3y +21,)
B h42) r
+ 34 azﬁ]—-[ 2ET, — 267, —ad

These expressions may be simplified, if we take the following inequalities
into account

B, b2
EJ, 9E],
and
;3
2EJ, 2EJ (b +20) > ad,

vy e

3 L4, )>>8+a28

(1.49)

which have the same physical meaning as inequalities (I.43).

With allowance for inequalities (I.49), we obtain the following approxi-

mate expressions for Xl and X2:
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\ + (Red$ + Meb) X

¥ * | 2E7, 2EJ

4 y
B b 420) 4 L3l
TEL . )[351, + 2FJ, ("'H’ 3 11+212)+

1‘2‘2 h(h+2) ?
o “23] - [ T AT T ”3]

!
[Pg(ad® —3) + Mgad] ( E;

(FJ2

Pl b tl+szz)]

P d8-+M,8
(Fedd+My )[351 2EJ, 3 ht+o

(1.50)

12
+ [Peladd —2) + Mad] | - 2EJ £33

3
I b ly zl(zl+2z) . L L+3
9 -+ 2 AR . S 1 2
(EJ, + El T )[3512 2EJ, 1+ L+2, +

12 . 2
+a+a23]_[ : ., A2 __aa]

X,=

2£7, 2]

When elastic elements with a step cross section are constructed, the length
21 is established in such a way that strain gauges may be arranged upon it.

The coordinate of the position at which the strain gauge is glued on may be
determined, by analogy with the preceding statements by means of the following
expression:

3 -
. Y L +2m L oLral
Py + My 8)[ 35 T ek "“H?_ 3 '.1:_,_21:) +

2

L I,
+ [Pgladd —3) + Mead] [ st et 212)J

x:-——————_'A__

L :
[P — ! -2 o, h
[P edd — )+ g (EJ;_. Fp ) +

(1.51)
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Figure 24. Diagrams of Bending Moments of Elastic Elements:

a - of constant cross section; b - of variable cross section.
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It may be readily seen that, if we set 22 = 1 and 21

(1.50) and (I.51) we then obtain the expressions (I.42), (I.44) and (I.45),
respectively,

= 0 in expressions (I.48),

Let us investigate a numerical example with the same data as given in the
case of an elastic element having a constant cross section. 1In addition, we
shall set 21 = 8.0 cm, 22 = 6.0 cm and J2 = 1.56 cm4.

Based on formulas (I.50), we obtain:
X, =163 kgf; X, = 1300 kgf/cm
Comparing these values with the precise values of X1 = 157 kgf and X2 = /34

= 1310 kgf cm, determined according to formulas (I.48), we can see that the
difference is small, and consequently we may employ expression (1.50) when
calculating the unknowns Xl and XZ'

The coordinate of the point at which the strain gauge is glued on may be
found according to the formula (1.51)

x =797 cu.

Comparing the diagrams of the bending moments in Figure 24 for the examples
under consideration (with elastic elementswith constant and step cross sections),
we can see that in the case of a step elastic element, the values of the bending
mements are somewhat lower.

Stresses in the Membranes of Force Measuring Elements

These stresses arise under the influence of the loads Pe Me’ il and iz.

Let us investigate the influence of the moments Me’ 22 and the forces Pe, X1

separately. The values of the radial and tangential bending moments due to the
influence of the external moments M and X, have the following form:

2
Mo= 2%53?727[( + BEE_@e+ |
F (- K ]cow;. i
My= 4,:”('R.+,,, [0+ RE (1 panp—
“(I‘TV) 3 ]gos¢, J

where p and y are the coordinates of a point in the polar system.

The stresses due to these loads are as follows, respectively:

oM, 6M, (1.53)
y Oy, = "

Gpy = R
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The stresses due to the influence of the forces Pe and il may be determined

by the following expressions:

o =~ PetX et 2
P2 2R RT+ (1), [ P

— 3_":'1(}?2 + ,2)](:(5s &

___Po *Xi _ [2R:rr, 6
Y2 SR (R (L) [ o Tt

+ ! ;% (R? 4 r’)]cosq:,

where h is the plate thickness:

.
/
3—v.

l-{—-v.

xR =

(1.54)

Based on the energy theory.of strength, we may determine the equivalent

stresses in the membrane

. 1 ] ]
aqer )yl bt

where
6 =g Jg ° — .
4 P1 + [\ 04’ . c‘l’x + a‘!’:'

The stresses will be at a maximum in the case p =

r and Y = 0,

(I.55)

Let us calculate the maximum stresses in the membrane for the example
investigated above (in the case of an elastic element having a constant cross

section):
by

0, = — 536 kgfem? 9y, = 73,5 kgfem?;
"e‘th 4100 kgfiemd.

Influence of the Compensating Device upon the Sensitivity of

o = —3740Kgt/en®; o, = — 4000 kef/cn®

the Elastic Element

The membrane rigidity influences the sensitivity of the elastic element.

The magnitude of this influence may be characterized by the ratio of the force

X3, which the membrane receives, to the external longitudinal force P (see

Figures 15 and 20). We shall call this ratio the loss of sensitivity for the

elastic element.

This problem is statically indeterminate. The condition of compatibility
for deformation of the membrane due to the force X3 and of the elastic element

due to the force P - X3 has the following form
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8Xa = a1’—-)(. 4

or, with allowance for the expression (I1.8),

xR Jf(%)4“2 (%)2_:’(§)2 (= 3) _ (P—X)h (1.56)

mno(l—’—z) E.-F 7
. R2

where F is the area of the shaft transverse cross sectionj;

_ E .33
Co12(l—vy)
We thus have bl /36
Xg=-——- SRR e
Em[“r IV (N (L (1 R 2]
R B R i, o
16nD(1__—§2—)

For the numerical example investigated above (See Figure 20), we may de-
termine the force X3, received by the membrane in the case P = 15,000 kgf and v =

= 0.3. Based on formula (I.57), we obtain

X, = 375 kgf

The sensitivity loss comprises
Xa
P

100% = 2,5%,
which is fully permissible.

2. Elastic Elements in the Form of a Ring

Circular elastic tensometric elements (Figure 25) are widely employed in
force measuring technology, due to the simplicity with which they may be manu-~
factured, the convenience in mounting these strain gauges, and also due to the
fact that it is very simple to design rings having a small curvature. One of
the most serious drawbacks of these elastic elements is that they have great
nonlinearity: their elastic displacements change the lever arms
much more than the displacements for the majority of other types of elastic
elements. This drawback leads to the fact that the use of circular elastic
elements is limited to the area of comparatively low metrological requirements
on the force measuring device.

Depending on the limiting load, the circular elastic element may be a beam
with great curvature, or a beam with little curvature. The ratio h_ is usually

Rg
used to determine the magnitude of curvature. In addition, the ring may have /37
either a constant cross section or a variable cross section.
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Figure 26. Calculational Diagram.

Let us first investigate the
simplest case when the elastic element
respresents a ring having a constant
cross section with a small curvature.

Figure 25. Elastic Element of the ﬁs 1slwe11 known, if: the quantity

Circular Type with Rigid Sections on = EB-,the use of formulas for a
the Vertical Axis. 0
straight beam leads to an error which
does not exceed 4%. However, if it is
satisfactory to have 107 accuracy, then the formulas for a straight beam may

be employed even for the case h_ =1 .,
Rg 5

Elastic elements of this type are usually used for measuring limiting
loads ranging between 50 - 500 kgf. Calculations have shown that for loads
less than 50 kgfelastic elements are produced having very small geometric
dimensions, so that the mounting of the strain gauges is complicated. In addi-
tion, the dimensions of the ring transverse cross section become comparable
with the displacements leading to a great increase in the nonlinearity. For
loads above 500 kgf the ring is made so thick that the calculations must be
based on the theory of a beam with large curvature.

In practice, a circular element cannot always be designed . based on the
well known formulas for a ring having a constant cross section. The supporting
sections serving to support the ring and apply the measurable stress lead to
the mnecessity of the rigid sections 2 (Figure 25). 1In addition, the construc-
tion of the elastic element provides for the membrane 1 which has the same
purpose as in the shaft-like elastic elements -~ to compensate for the transverse
component of the external stress.

The total stress Eiot received by the device is distributed between the

membrane 1 and the ring 3. The portion of this stress belonging to the ring

is determined from the condition of compatibility for displacement of the ring
and the membrane at the place where they are combined. If we designate the
force received by the ring by P, we may determine the stresses and deformatioms
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arising in this ring. The problem under consideration is statically indetermi-
nate.

Isolating one quarter of the ring, due to symmetry, we cobtain the computa-
tional diagram (Figure 26). As is customary, expanding the static indetermin-
ancy, we find the expression for the unknown mement My, which has the following /38

form if we disregard the influence of the normal and transverse forces.

M. = PR, (1__ Siﬂ*llo) (1.58)
°T 2 o /

where the angle WO determines the elastic section of the ring, as may be seen

from Figure 26.

The bending moment in an arbitrary cross section ¥ of the ring equals

My = My— Pfo (1~cos¢)=—-"f—°(m-—cow). (1.59)

Setting WO = %-in formula (I.59), we arrive at the specific tabular value

of the bending moment for a ring having a constant cross section without a rigid
section.

1
> cos q;). (1.60)

The bending moment, which is in operation in the ring cross section A
(see Figure 25) may be obtained by setting ¥ = ¥, in formula (I.59)

A4¢==—-PEQ(:}

0
M,,z_ﬂio_(“_"‘h_cosq)o). (1.61)
2 o
We obtain the following correspondingly for the ring cross section B@ = 01
. PRO Sil‘lqlo __1)
My =——— (——% . (1.62)

Based on formula (I.60), we may determine the values of the Rending moments
of the ring without a rigid section. For the cross sections ¥ = i-and ¥ =3q,

we have MA = — 0.3183 PR.0 s for ¥ = 0 and ¥ = m the quantity MB = 0.1817 2P-RO.

In contrast to a ring which does not have a rigid section, the ratio be-
tween the bending moments MA and MB of a ring with rigid sections will depend
on the angle WO. The strength of this type of elastic element must be calcu—
lated according to the largest value of one of these moments. 1In practice,
wo = %-is very frequently employed. The maximum value of the bending moment in

the case wo = %- may be obtained in the cross section A according to formula
(I.61).

We may determine the dimensions of the ring transverse cross section from
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the condition of strength
. Sl (1.63) /39

where W is the moment of resistance of the ring cross section; {o} -~ permissible
stress.

The metrological properties of an elastic element in the form of a ring
depend . significantly on its rigidity. In order to determine the maximum
deformation of the ring in the direction of influence of the external force P,
we may employ the method of Mohr. The expression for the bending moment in
an arbitrary cross section ¢ due to a unit force has a form

My = — Ry (1 —cos ).
The desired displacement may be determined by the following expression

)
2
A =2 C M. -
A EJOJ‘MQ’ M, - Rodp. (I.64)

Integration of equation (I.64) leads to the following formula for the ring
deformation:

s — PR
4 EJ

(I.65)

1 E . .- .
(‘2— o +ﬁ—:— sin 29, — ﬂ%m)

In a similar way, we may find the expression determining the change in the
horizontal diameter of the ring

PR} /sinyg 1 sin2d, 1 .,
5= g ( o 2 9 2% “’°)' (1.66)
Setting ¢0 = %3 in equations (I.65) and (1.66), we obtain the well known

relationships for a ring without rigid cross sections;

. PR3
A, =0,137 -2,
5=0, = (I.67)

PR}

= —0,149 20,
EJ

44

Plotting the values of the bending moments for the compressed wires of the
ring on the basis of expressions (I.61) and (I.62) we may compile the diagram
(Figure 27) from which it may be seen that there is a cross section o, in which
the bending moment equals zero. In order to decrease the creep of the strain
gauge, its ends are sometimes arranged at places where the bending moment equals
zero. We may determine the coordinate of this cross section. We find the follow-
ing from expression (I.59)

COs oty = M, (I.68)
°

i.e., the value of the coordinate o, depends on the magnitutude of the angle /40
wo of the rigid section of the ring.
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The calculation described above
makes it possible to calculate the
stresses at a definite point in the
ring. However, the strain gauge is de-
formed concurrently with a section
having a definite length. Consequently,
the average stresses along the strain
gauge length are measured, and the elec-
tric signal recorded from the latter is
=0173 %% g proportional to these mean stresses.
Thus, in order to perform the calcula-
tions it is necessary to know the aver-
age stress values over the strain gauge
length. Let us determine then if S is the
arc equal to the strain gauge length and determined by the angle Yo? then the
average relative elongation is

Ma

=0.327’2’—”e

Figure 27. Diagram of Bending Moments

Oty

€ xds (1.69)

e

Substituting the values )

o
A
d,= Ry} and S=R,- a
we obtain

(1.70)

Te
1
gla."}_— E-W_—-ao j‘M¢- dl;’.
0

Substituting the value of MW in the expression obtained according to for-
mula (I.59) and performing integration, we obtain

= PR (inqe—To g
9 = 2W‘:o (sm’ro :y‘:smqao). (1.71)

In those cases when the strain gauge ends are located at positions where
the bending moments, and consequently the stresses, equal zero, it is suffi-
cient to set Yo = % in formula (I.71), in order to determine o__ .

The stress P received by the ring comprises a portion of the total stress

Ptot influencing the device. Therefore, in order to determine the extent to

which the sensitivity of the elastic element is reduced, it is necessary to
determine the stress PM’ It is necessary to know the stress PM in order to

design the membrane for strength.

In order to determine PM and P, we have the equation
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P4+P, =P
+ P Prot. (I.72)

We obtain the following from the condition of compatibility for displacement

of the membrane and the ring AA =V oax’ where AA is the displacement of the

ring determined by expression (1.65), andvmax is the maximum deflection of the /[41
membrane according to expression (I.8):
PR}
EJ

Py R?

'16::0(1 —%2) (1.73)
[+ () =2 (&) (&) ()]

where R and r are the corresponding dimensions of the membrane; D - its
cylindrical rigidity.

1 R _sin“% _

Solving equations (I.72) and (I.73) concurrently, we obtain

1
P—pR . 1.74
t“( L+ ) -7
.k
Py=P,_. ~(__° )
Htet 14k (I.75)
where ko is a dimensionless coefficient having the following form
2 / 2
167D - R} (1 __%) (—é— Jo +—:— sin zwofﬂ)
by = b (1.76)

r\4 r\2 r\2 R\21°
E/R| 14 [—) —2(—) —4[—) - (n—
[+(R) (R) (R) (I“r)]
The maximum bending moment of the plate may be determined from expression

(1.9), and the corresponding stress may be determined according to the follow-

ing formula
p (max)

6M
T opry, (1.77)

[«

Let us provide a numerical example for the following initial data (see
Figure 25): Ptot = 50 kgf; R0 = 25 mm; width of the ring b = 10 mm; thickness of

the ring h = 1.75 mm; angle of the ring elastic section wo = %—; dimensions of
the membrane R = 36 mm, ¥ = 12 mm, hm = 0.5 mm. Permissible stress [ag] = 40

kgf/mmz; modulus of elasticity E = 21,000 kgf/mmz; Poisson coefficient v = 0.3.

We may employ (I.76) to determine the coefficient ko
ke =+ 0,109,

According to equations (I.74) and (I.75) we obtain
P = 45 kgf and Pm = 5 kgf
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The sensitivity loss of the force measuring device is thus as follows, due
to the presence of the membrane
Py
i%ot
In addition, based on formulas (I.61) and (I.62) we may find the bending
moments in the ring cross sections
MB=97 kgf mm

=109,.

The calculation shows that the bending moment is largest in the cross
section A of the ring rigid section. Based on the magnitude of the largest
moments, we may determine the stress

The moment of resistance of the ring cross section equals

2
.bL. — 5,1 MM“’,

from which we have

183

cr = 36 ke mu2 < (o],

i.e., the condition of strength for the ring is satisfied.

max

Let us determine the changes in the vertical and horizontal ring diameters.
Taking into account the signs of the displacements, according to expressions
(I.65) and (I.66),we obtain

Ap = —0,159 mm; Ag= 0,261 munm.

Assuming that the strain gauge is distributed over an arc (-o ., + ao), we

0’
may calculate the angular coordinate s at which the bending equals zero, and

the average stress o__. Based on formula (I.68), we find ag = 34° 19°',

. 2
and according to the dependence (I.71) we obtain Oy = 12.6 kgf/mm",

In conclusion, we must check the stress in the membrane. TFrom expression
(1.9) we find the value for the maximum bending moment which will be as follows
in the cross section of the rigid center

M .= —0,585 keffunz,
and the corresponding stress equals

* Mmax : GMma;c
W ity

¢ =

= l4kgfun.

Let us investigate an elastic element in which, in addition to rigid
sections on the vertical axis I - I, there are also rigid sections on the
horizontal axis II - II (Figure 28).

142
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Expanding the static indeterminancy in the customary way, we obtain the
expression for the bending moment in the ring cross section ¥

Mcp-:"_ PRo ( sin t,bz——sin% — oS ) (1.78)
. 2 T v)-
In the case when the rigid sections are identical over the length wz = /43
= %-— wl’ expression (I.78) assumes the following form
My = — P;?o cos:pl—sin ¢y — cos} (1.79)
- —2h

We may find the bending moment in the cross section A in the case Yy = wz,

and in the cross section B in the case § = wl.

In order to obtain the rigidity, it is necessary to have the expressions
determining the deformation of the ring elastic section. The identical nature
of the points lying on the ring vertical axis, for the elastic element diagram
under consideration, may be expressed as follows:

PRg 1-
— (b, —
Fr |2 e+
{
+ —;—(sin 29, — sin24;) — (1.80)

__(sin gy —sin )2 ]

Aa=

P2 — Py
In the case when wz = %-— wl, we obtain
PR 1
Ag =22 (= __ —
=T (2 24")
(1.81)
_ 1—sin2g,
=
_2‘—‘2‘,’1

Correspondingly, we obtain the following for displacement along the hori-
zontal axis II - II
= L’*{M
E£J Po—dy

For an elastic element with rigid sections of equal length, expression
(1.82) assumes the following form

(1.82)

5 (cos ; — cos $,) ———;— (sin® ¢, — sin? "Pl)l-

PRY [ 1—sin2y, 1
A e ¢ SNNENNL I 2 (1.83)
£7 = g GOS8 ).

PR

Ap =

The elastic section of the ring of elastic elements widely employed in
force measuring technology (see Figure 25) has a constant cross section.
Calculations have shown that the greatest stress customarily arises at the points

38



sections. Thus, the average stress
which may be realized by strain gauges
is considerably higher, as a rule.

Consequently, in these types of
elastic element constructions, the
magnitude of the measurable stress is
limited by the maximum stresses which
are in operation at dangerous points of
the ring cross section.

The use of rings having a variable
cross section as elastic elements makes
it possible to produce the largest
stresses at those places where the strain
gauges are glued on. Let us investigate
an elastic element, whose middle line
has the form of an arc of acircle,
with the radius R.0 (Figure 29). We

Figure 28. Elastic Element of the
Circular Type with Rigid Sections on
the Vertical and Horizontal Axes.

shall assume that the supporting sections are absolutely rigid. Due to the
symmetry, it is sufficient to investigate one fourth of the elastic element
(Figure 30). Let us employ the following law for the change in the moment of
inertia along the beam axis:

Jy= 2o
P sk (I.84)

where JO is the moment of inertia of the cross section I - I, and the coefficient

k is determined from the condition that the stresses in the cross sections I - I
and IT - IT have a definite ratio to each other.

Assuming that the ring is a beam with a small curvature and expanding the
static indeterminancy in the customary manner, we obtain the following expres-—
sion for the unknown bending moment in the cross section I - I:

PR k i
M, — : 0 [1 — (ctg kY, sin q;.o—iccos %)] . (1.85)

The expression for the bending moment in an arbitrary cross section has [45
the following form

PRy | R .
Mq,: —2°-[1 — (Ctgkq)o + SIn '{)o—kCOS‘-Po)—COSQ)] . (1.86)

Assuming that the height of an arbitrary cross section ¢ of the ring may
be expressed as
he

hy = ——, (1.87)
V cosk{

we obtain the following formula for the stress in an arbitrary cross section:

» A close to the transition to the rigid /44
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Figure 29. Circular Elastic Element Figure 30. Calculational Diagram.
with Variable Cross Section.

04, = ’—§3PR° [ k

2 L T— ke (ctg kd, - sin §g— kcos $g) — cos q»] . %/ cos? kY (1.88)
0

The coefficient k may be determined most simply by defining it by means of
the ratio m of the heights of the cross sections IT - IT and I - 1T

m=—=2 (1.89)

Employing formulas (I.87) and (I.89), we find
k:—Larccos—l—
Y - (1.90)

0 m
When elastic elements are constructed, it is also necessary to know the
displacement Va of the clamp in the direction of the line of influence of the

force P, This displacement is determined by the Mohr integral., Avoiding the
cumbersome calculations, we shall present the final regult

oa= L8 < : kb, - sin 24 in ko cos?
A= El {[ (1 — ) Pro 4](cos b - SinN Qo—k-51nk?o.cos "'Po)_' (1.91)
k . 9 .
o ( —k2)2< ctgkdg - coskd, - sin® P — m) S]nk.ré)o}:

Sometimes the first significant digits vanish as a result of calculating
Vs which decreases the computational accuracy. Therefore, if the accuracy of

a slide rule is sufficient for calculating the stresses, the quantity v, must

be calculated with a larger number of places.
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Just as in the preceding cases, in order to decrease the creep the strain
gauges are glued on so that their ends enter the zones of zero stresses. In
addition, it is interesting to know the average stress over the length of the
strain gauge. Setting the equation for the bending moment (I.86) equal to zero,

we obtain the coordinate % of the cross section, in which the stresses equal /46

zZexro:
E .
®p = arc cosm(Ctgk¢o sin g — ke cos ¢g). (1.92)

The average value of the relative elongation of the strain gauge is
determined by equation (I.70). Finally, the expression has the following form

Ty

_ 3PR, [ k (ctg-kd, - sin —kcosd)'—cos‘]x
av bh%aoj l—k'.( gkto - sin o to) — cost (1.93)

X 13/ cos?ky do.

This formula may be employed for the calculation according to any approxi-
mate method. The form obtained for the curves of the ring elastic section,
based on technological considerations, may be approximated by the arcs of a
circle, for example. Thus, even a significant deviation of the beam middle
line from a circle is of no significant importance.

Let us study a numerical example. Let us set P = 5kef, RO = 4,2 cm; the

width of the ring b = 2 cm; the permissible stress [c] = 3000 kgf/cm2, by = 70°,

m = 3.

According to formulas (I1.86) and (I.90), we obtain
k= 1,95 My_o = —0,13 2%

My—y, = 0,528 £Re_
. 2

A diagram of the bending moments is shown 1n Figure 31. On the basis of
formula (I.88), we obtain

oymp = — 0,39 PR,
bh

o4y, = 0,176 R0
bh2

Thus, the maximum stress in the cross section ¥ = 0 is more than twice as
large as the stress in the cross section ¢ = \bo. Figure 32 presents a diagram

of the maximum stresses. Based on formula (I.91), we may determine the ring

deformation: 3
PR3

Jo

v4 = 0,0178
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Equating the maximum stress in the cross section y = 0 with the permissible
stress [o] = 3000 kgf/cm2, we finally obtain
hy= 117 um; vg= 1,23 mn.

We have studied a circular element having small curvature, for which /47
%— <'%. However, such an elastic element is only employed for comparatively
0

low loads. If the limiting load is high -- for example, more than 500 kgf ~-
then the circular element changes into a beam with large. curvature, and the
formulas presented above are no longer applicable. It must be noted that a
ring having great curvature has several advantages as compared with a ring of
small curvature: it is more rigid, it has less nonlinearity, etc. This case
presents an illustration of the general assumption: the design of elastic
elements for large loads encounters much less difficulty than the design of
elastic elements for small loads.

0, 52880 0.176 ﬁ’?
2 o \7 bhp
3 s
2z
2
Yo
Wy . {
| f N 7
\ PR, 0 0,39 L4, )
Figure 31. Diagram of Bending Figure 32. Diagram of Maximum Stresses.

Moments.

Most frequently, a circular elastic element with large curvature is made
with a variable cross section in order to equalize the stress somewhat. The
nature of the change in the ring cross section may vary greatly. Usually, in
order to simplify the production, the contour of the circular element is limited
by arcs of a circle. Thus, as a rule, the transverse cross section is rectangular.
Thus, the height of the cross section is variable, and the width of the ring
is constant.

A circular elastic element having large curvature is shown in Figure 33.
Due to the symmetry with respect to the axes, it is sufficient to examine only
one fourth of the ring. The angle ¢ is read from the axis x, and the normal

force NO = %. and the unknown moment MO then act at the cross section ¢y = 0.
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Let us load the system also by a fictitous force QO’ which will be used /48

later on to determine the deformation of the horizontal diameter. The expression
for the normal stress in an arbitrary cross section has the following form (Ref.
19)

N M M,
Gy v, Myly g
W=, TR, T vy, (1.94)
where
Ny = Nysina, — —Q2-°—cos oy (1.95)

where aw is the angle between the normal to the neutral line and the axis; y -

distance from the neutral line up to the point at which the stress is determined;

M, :Mfl‘No(ro*—f(pCOSlp)——-%wsirﬂ}:;

ry (1.96)
’
J :J yz'dFkh
ryty

e

for a rectangular cross section
r 2 h
J'=b,g.;,¢(_~z mreth ),

by, 2y, —hy

Fw is the area of the ring cross section under consideration;
Ty ~ ring radius of curvature in the horizontal cross section before /49

deflection;

rw ~ ring radius of curvature in an arbitrary cross section before deflec-

tion;
h¢ - height of the ring arbitrary cross section.
Let us formulate the expression for the intersection force Q¢’ which we
shall need later on:
Qy = Nycosay + Q2° sin ay. (1.97)

The unknown moment MO may be determined from the condition that the angle
of rotation of the horizontal cross section equals zero. According to the
theorem of Castigliano, this condition has the following form

9 _ o, (1.98)

M,
where 1 is the total potential energy of the curved beam, which equals the
following in our case (Ref. 15)
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M2 N2 MN Q2
H=4j< v v e &
2EF e -1y + 2EF,, E-Fyr, + 2GF, ds, (1.99)

and integration is performed over one fourth of the beam axial line. In formula
(I.99) E and G are the moduli of elasticity of the first and second kind,
respectively: S0 - length of a fourth of the curve passing through the center

of gravity of the cross sections; o - coefficient depending on the form of the
beam transverse cross section

Fy S\2
o = — —_ dF,
Jﬁi(b) v

@
where S is the static moment of the surface.

e
Figure 33. Elastic Element with Large Curvature

For the rectangular cross section o = 1.2, and the distance of the neutral
axis from the center of gravity of the cross section is

h ryd
e=ry——Y 4»12 ’
-2 Iy brghy
n
by
where r; is the radius of curvature of the inmer ring contour (r1 =T, T3 )3
h
r2 - radius of curvature of the outer ring contour (r2 = r¢ + Ei ).
Thus, condition (I.98) yields
1 (4 : (1.100)
JF¢.,¢(T~N¢)ds=O.

(Se)

Employing expressions (I.95), (I.96) and (I.97) and solving equation
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(I.100) with respect to MO, in the case QO = 0 we obtain

rg—ry - cosd. ind
Ng - S' 0 ds 4 —slnids
3y eFy -1y Fy-ry

My =- Se) . B (r.101)
ds .
eFy - ry
Se)
The integrals contained in this formula may be determined either by numerical
integration —— for example, according to the Simpson law —- or directly, after

approximation of the integrands by suitable functions which make it possible

to obtain the integrals which may be reduced to tabular integrals. In additionm,
when the numerical example is investigated, the manner in which these functions
are selected will be shown.

Making identical transformations in the expression

h
'“L_;— I+ 2:’
In~ In - ¢
¢ hy
Ty — 70— l——
2 2ry,

and expanding it in series, we finally obtain

L=__3‘__[1\_i<_’i)2_£( By )*_
e h 2 15 \ 2 175 \ 2.
Ty . Ty Ty
er
(1.102)
_ﬂ_(._f‘i_)ﬁ ]
2625 \ 2. s, )
. . hy 1 .
It may be readily seen that even for the relationships 7 < 0 it is

¥

sufficient to confine ourselves to the two terms of this expansion.

In order to determine the displacements of the vertical AA and the horizontal

AB of the cross sections, we may again employ the Castigliano theorem
ol o1l
Ag=—3 Ap=-—, = 0).
A= B = (Q=10)

Employing expression (I.99) for the potential energy, we obtain
Prg—ryces §)2— WM, (rg —ry, - cos ) P -sintey
' ALF er,, 4E - F,

Ag=4

(So)

My s_in aw-f-Psin 'af'gbr(’o —rycosd)  alPcosay ds:
2EF, -1, 4G - F, "
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Ap=4 J{ [—2My +Plrg—rycos§)lsing  Psing,cosa,
| 4EFye 4EF,
(So) _
2M "cos e, —P [ry, sin ey, sin § — cos ay, (rq —ry, cos )]
) 4EF - 1, -+
o P - sina,cosa,
—d,—.‘b ds.
4GF,,

According to these formulas, if we know the law for the change in hw and
rw, we may calculate AA and AB either by numerical methods of integration, or
-- for example, analytically -- by approximating the values contained in the
integrand by the functions selected by the appropriate method.

Let us examine a numerical example (Ref. 28). For the elastic element
shown in Figure 34, it is necessary to determine the stresses in the horizontal
and vertical cross sections. The elastic element is limited by the arcs of

the circles having the radii R1 and R.2 (which are distributed in an eccentric

manner) and the rectangular section ke. The initial data are as follows: R1 =

= 1,938 cm; R2
width of the transverse cross section b = 1.0 cm; load P = 500 kgf.

= 3.4 cm; distance between the centers of the circles a = 1.36 cm;

Let us approximate the line passing through the center of gravity of the

cross sections by a circle with a center at the point D(x = - %_, vy = 0) and
with the radius R.av ~MtR . It may be stated that this approximation will

2
be more precise, the smaller is the distance a. The section kc is assumed to
be absolutely rigid. Thus, op = T - §. We may note that the height is described

2
very well by the following relationship
hy = R.‘,‘.Rl—%cosqa.
The area of the transverse cross section may be determined by the expres- /52
sion

F.,,=b(R2-R,—§cosqa).

We obtain the following from formulas (I.101) and (I.102)

ﬂ"“l— 4. wa(l — cos $)dd 4| (—cosd)dd +_l_ cos Yd
2 X 15 hy 3 ) h
M, = - - 0 . (1.103)

2
L N )
hg 150 hy
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Expression (I.103) may be simpli-
fied in the majority of cases en-
countered in practice. For this
determination, let us employ the integrals
contained in it:

x P 4R?
4p2 I —cos¢ ® 1.
R ag T dy > h_iiy( 2 l) i (1.104)

—145“_[ l_cos¢dq,< 4. (1__1)'; (1.105)

hy 158mia \ 2
0
Figure 34. Design of an Elastic 1 2 &m¢d¢ I (1.106)
Element with Large Curvature. 7;J1 ay < ;
h, =S Bhmin
b
= d 4R? 1.107)
e [y R =
o A 2
.0
" dy
204y 4 ® (1.108)
15[ hy, <15;:,,,1.1' 2
0
R

It may be readily seen that even in the case "3V = 3 the integrals (I.105)

and (I.106) are small as compared with the integra?m?¥.04), and the integral /53
(I.108) is small as compared with the integral (I.107). 1In actuality, the

integral (I.105) thus comprises ~ 1%, and the integral (I.106) comprises ~ 2%

o integral (I.104), and integral (1.108) comprises " 1% of integral (I.107).

The simplified expression for M0 acquires the following form
+
ﬂji@ﬂ
2 hz

b,
m

0

dy

Integrating this equation, we obtain

E(4—F) —24 224 (2 —3k 1+ £?) Vli—a”fg"@

My= “Zav

2 2 Y1— 2%
E(4—k2) 4 24k -
( )+ (24 £2) Vi@
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where a

h= ——
2(Ry—Ry)

For our numerical example, M0 = 181 kgf cm. The value of MO calculated in

(Ref. 28) according to the Simpson law equals 178 kgfcm, in accordance with the
formula (I1.100). The divergence comprises ~ 1.5%, which is fully acceptable
for these calculations.

Based on formula (I.94), we may calculate the stresses at the outer and
inner edges of the horizontal and vertical cross sectioms.

Horizontal cross section: 2
outer edge ..esvesescceccccososasaons ... 1270 kgf/cm2
INNET €dEE vevevveeconcessssssssassasass 2250 kgf/cm

Vertical cross section: 2
inner edge....ceecesacsns teeereneeaeeeess 1670 kgf/cm

Let us compare these results with the extremal data given in (Ref. 28).

Horizontal cross section: 2
outer €dge..eeeeeeseonanns ceeeseaans ee.. 1165 kgf/cm
inNer edge...eeeeeeneessseessonnssensase 2175 kgf/em

Vertical cross section: 2
iNNET @dEeerrserenerenessransacnnnasaess 1775 kgf/em

The divergences comprise +8%, +3.5% and -67 respectively, which is
completely satisfactory.

In conclusion, we would like to note that the calculations may be signif-
icantly simplified for a thick circular ring having a constant thickness. In
this case, the moment MO may be determined by the following expression

o= S 1) )

x

The stresses may be calculated according to formula (I.94). The expressions/54

for the displacements are also simplified:

For the vertical cross section
Ay = " L3_"__) oE ]_ L(L_)_J_}-
a= P[5 =)+ 2] —emf o (5 — 1) =)

For the horizontal cross section

r a-E 1 1y
=-L o) —om, (L L
As EF[P( G 2) °(e r)]

The radii R1 and R2 of the circles defining the elastic element must be

select?d so that, on the one hand, the calculated stress provides the necessary
electric signal, and, on the other hand, so that the maximum stress at the
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cross section B does not exceed the maximum stress at the cross section A, where
the strain gauges are located. In the example under comsideration, this relation-
ship is fully satisfactory. 1In practice, if it is not possible to fulfill this
condition from the very beginning, it is necessary to change the dimensions and

to make a second calculation.

3. Elastic Element in the Form of a Circular Plate
With a Concentric Rib

Beginning with this section, we shall investigate elastic elements upon
which the strain gauges are wound in the form of a spiral, and are not glued on.
This construction is done so as to avoid shifts arising between the strain
gauge and the body of the elastic element during the deformation process. The
principle has produced a large number of elastic elements which represent, in
the majority of cases, bodies of rotation undergoing axisymmetrical deformation.

P
Y]
b - /2 3 1 V\\1
/ Mo, F
S Moz
W= ety sy
' (/77 ‘ S 01 > NN
e— 27/ —» — [ |-
rs——————— 2y Ix
- - . = ¢
T 2R - L 7 ?
Figure 35. Elastic Element Having Figure 36. Computational Diagram:
the Form of a Circular Plate With 1 - Inner Section of the Plate;
a Concentric Rib. 2 - Quter Section of the Plate;

3 - Ring.

The elastic element under consideration (Figure 35) represents a circular
steel plate fastenmed onto the outer circle and having a rigid center in the /55
middle which serves to load the plate with the concentrated force P.

A ring having the radius ri, the height H, and the width b is placed
symmetrically with respect to the plate axis. A wire transducer is wound onto
the ring. Under the influence of the external force, the circular plate and
the ring are deformed. If the force P is applied as is shown in Figure 35,
the wire, which is mounted on the lower section of the ring, is elongated; the
wire mounted (usually with initial stress) on the upper section of the ring
is compressed.

Let us introduce several simplifying, obvious hypotheses. 1In the calcu-
lation being considered, allowance cannot be made for the influence of the
wire transducer, due to its smallness. In addition, the radial stressin the
wire, which is wound onto the generatrix of the ring with a certain stress,
does not introduce any qualitative changes into the calculations.
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Based on the law of the independence of the force direction of influence, this
radial stress may be regarded as an additional stress which produces the bending
moment acting at the plate cross section and shifting its zero position.

The plate deflections are small as compared with its thickness, and the
thickness is small compared with the radius. Therefore, the calculation is
performed on the basis of generally known hypotheses which are similar to
those which are applied in the deflection of beams.

We shall assume that the rib is a beam with a small curvature, since the
ratio between the ring cross section width and the radius of the axial line
is small b «1. The geometric dimensions of the plate and the notation employed
R
may be seen in Figure 35.

Changing to the computational diagram (Figure 36), let us divide the
plate into its component elements, and we may replace the action of the discarded
sections by the corresponding stresses. Let us investigate the deflection of

the plate. /56

The differential equation for the symmetrical deflection of a circular
plate which is loaded transversely has the following form.

d 1 d _____Q_‘
wlr e 0]=—7 (1.109)

Where p - independent variable;
- corresponding angle of rotation for the cross section;

transverse force acting at the cross section p;
cylindrical rigidity

Do @
1

Eh3
12(1 —v?)

E - modulus of elasticity;
v — Poisson coefficient.

For the assumed computational diagram, it is apparent that the magnitude
of the transverse force acting at the cross section equals

P
Q—_2E'p'
Therefore, the differential equation (I.109) assumes the following form
d 1 d P
dp [T dp b e)]—%pD' (1.110)

Performing integration, we obtain

1 d P
o dp (pe)“ 2nD 1ﬂp+Cl,

or, in other words,

d P
—_ =, .
s (p- ) 5o PP +Cyep
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Performing integration, we obtain

P
oD jp Inpdp +Clypdp-

prb=

We thus find the expression for the angle of rotation of the plate
cross section at any arbitrary point

6=C 2Inp—1
P+ -2 =+ —=p (@Inp—1). (1.111)
The expression of the derivative %% has the following form
dd C P
L o,y P (1.112)
dp 1 ot - 8xD (21np -+ l).

The deflection of the plate may be found from the following equation
v =C3— [ 8dp. (1.113) /57

Substituting the value & from formula (I.111l) in expression (I.113) and
performing integration, we obtain

v—=C,— Cl . p*—C,lnp— ——(lnp—l) (I.114)

In the computational diagram (see Figure 36) for the inner plate section,
the independent variable p may be changed within the limits r < p < ry. The
additional index 1 is introduced for the integration constants in this region,
and the index 2 is introduced for the outer plate section, where the argument
changes within the limits ry < p < R. 1In addition, the rdtio P is introduced

R
in expressions-(I.111), (I.112) and (I.114) under the sign of the natural
logarithm, instead of the argument p. This is only indicated by the magnitude
of the integration constants. Thus, we have the following system of equations:

For the inner section of the plate (r < p < ry):

8, = Cup + Cgf —}——é—-p(mni—l); (I.115)
‘%_ n— C:; Ly (21n—-+l) (1.116)
= Ca wln— B:D 92(1“%"‘1); (1.117)
For the outer section of the plate (rk < p < R):
O =Ciasp+ 2+ 550 (2002 —1); (1.118)
‘;?)2 = Cy, — C;:: —{—%(Nn%—}—l); (1.119)
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Cis

Uy = Cyy — 2

P
pz—ngln%——sn—Dpz(ln%—l)- (1.120)

It is necessary to determine 6 unknowns from the obtained system of equa-

tions based on the given boundary conditions. In order to determine the constants

Cll’ 021, C12 and C22, we have the following boundary conditions:

I)p=r: 91=0;
2)p:R’ 62:‘—0;
3)

4) }p' =7m Qi = B39 = 6,

where 6 is the angle of rotation of the cross section of the ring located
on the radius rg.

Satisfying the first condition, we obtain

P
8rxD

Cu-ri 2 -r(2ln%,—.1)=0 (1.121)

The second boundry condition yields

C P
C —2 _ T R=
1R+ R 8nDR 0. (1.122)
The third condition leads to the following expression
C. C.
Coure+ ru =0Cpo- e+ :2 .
K X
Introducing the notation
rx;kR, (1.123)
We obtain
CyukR — CihR 4 2 — 2 — 0. (1.124)
n® ! kR kR :

In order to formulate the fourth equation, it is necessary to employ the
condition of compatibility for deformation of the plate and the ring.
X

'%end

M,,z(“: >M9’ : ::: ——M,,'—_{_ )M;,z AV
Jé_"x 3

Figure 37. Diagram of the Ring
Loading.

—~—

x

. X
Figure 38. Determination of the

‘Bending Moment.
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The ring separated from the plate calculational diagram (Figure 37) is
deflected uniformly by the distributed moment

m=M, —M,, (1.125)

Let us represent the effective moments in the form of vectors (Figure 38),
and we may find the value of the bending moment from the condition of the ring

equilibrium. Let us write of the sum of the projections of the moment vectors
on the x - x axis

M = §m sing .« r, - dy,

from which we obtain

A%enﬁ=ﬂ”” (1.126)
With allowance for the relatiomships (I.123) and (I.125), the expression
for the bending moment, which acts upon the ring, will have the following form

M o BR (Mo, — M,). (1.127)
The angle of rotation for the ring cross section 6 may be determined
from the following considerations. The normal stress at the end point of 59

any transverse cross section of the ring (Figure 37) equals
_ ORR (M,,— M,)

Omax = T pyr (1.128)
Let us find the relative elongation at the same point
6kR (M, — M)
o Smax_ _ [ T
Cmay = — o = Eob T . (1.129)
Due to deformation, the absolute change in the radius Ty comprises
6(kR)?2- M, —M
A’x::&mx'kR::' ,\4+4_&___iﬁ . (1.130)

EbH?

On the basis of expression (I1.130), we may find the angle of rotation for
the ring cross section

6 Ak _ 12GRPM, —M,)

H E-b.H? ’
2
Or

(kR)* (M, — M)

0= P e
E. I, : (1.131)

It follows from formula (I.131l) that

M,—-—-M :--EJ'r 6‘ . 2
4 P (kR)z (I 13 )

In order to satisfy the fourth boundary condition, it is necessary to have
the expression for the difference Mp2 - Mpl' The bending radial moment acting

in the plate cross section may be determined by the well known dependente
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/ do
Dl T ?—) (1.133)

Substituting the expressions (I.115), (I.116), (I.118) and (I.119), which
were derived above, in formula (I.133), we obtain

Me.‘Mp; = D[CH I+ —Cy (14— c” (l —v) = Cu -(1— )] (1.134)

On the basis of equation (I.132), we obtain

D|Cyy(1 4-v) — C c E-J
[ (1) —Cp (1 49— G2 (1 v)+ L g )] el (1.135)
According to the boundary conditions, we must substitute the values p = 160

=ry = kR and 6 = el(k) = ez(k)ein expression (I.135)

0= CubR+ 2 + 2 kR(2Ink— 1) (1.136)

We finally obtain

sz Czl
[1,(1+v)—cu(l+v)—(kR),( )+ (1] =

(fg’[ WkR + S Cﬂ o kR(2 1nk~—l)]

Reducing similar terms, we arrive at the following

Cn(l+v)—cn[(14v>+'”*]‘— Lo —y)

T krD | (Y (1.137)
Car P-E-U, .
(kR)’[( —M- kRD] sDuR 2 Ink—1).

Thus, we have obtained a system of four equations (I.121), (I.122), (I.124)

and (I.137) with four unknowns Cll’ C21’ C12 and 022. Solving these equationms,

we find the following values for the integration constants:

' r\2 R
2 I AL s .
. R DkR[l (R) (l+21n ; )]+EJ,(1— |
1 "exD '
T

2DkR[l —.(é)2]‘+ Ele(— '

_kz)[l—(k'R) .(l+21-n f)—zlnk '. : , (1.138)
op-@] )

p 2Dlen—&+EJx(l—k’) (ln—&-l—lnk)
C = r - r 20
21 r

4D 2DkR[l __(7;_)214- El (1—#9 [1 —Q(kr_R)z] ;

-
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G F 2DkR[ - ?f) (l+2ln-—~)]
8xD =
o[+
) +EJ,,[k= ( ” —& +2mk]
Bl (1 —-Iz’)[l ~ (7:;)2] ; (1.138)

R R\2 .
. 2DkR - In— —EJ lnk[k—) .__.1]
Cp=-F [ Esink( ~

el -l

By employing the four coefficients obtained, we may determine the angles /61
of rotation of the cross sections and their derivatives, and consequently the
corresponding bending moments (I.133).

r3,

In order to calculate the deflections Vi and Vg WE must know the inte-
gration constants C31 and C32, which may be advantageougly expressed by means

of the specific values of the coefficients (I.138). We have the following
boundary conditioas:

) p=r,=%kR, v; =y
2) p—=R, 5= 0.

Satisfying the first equation, we obtain

Car— 2 (4R — Cu-nk—EER (10 1) =

= Cyy— C“(kR)’ Cas lnk—P ‘kR) (Ink—1)
from which we have
Gy — 54 (5R) — Cy Ink = Cag — C""(kR)" CpyIn . (1.139)
The second boundary condition yields
—Cupa, PR* _
2 R+ 8=D. 0,
from which we find the direct value of 032:
C PR®
Csz = —LIR’—'%— (1-140)

Substituting equation (I.140) in expression (I.139), we obtain

(I.141)

Coa =S (RRP + Cy Ik + 2R (1 — £ —Cyy Ink — LR

D
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The values found for the constants C31 and C32 may be substituted in the

initial formulas (I.117) and (I.120). We obtain the expressions for calculating
the deflections vy and v, of the plate in any cross section

m=%mm-w+%ﬁw—mﬂ+%mm—w—

» (1.142)
_ _.P 2 1\
Carlnb——— [R2+p2(1n £ 1)]
Cys )
vz:“214(R2-92)—0221“P£‘—8—:;D‘[R2+92(1n—£——~ l)] (I.143)

In order to determine the maximum deflection in formula (I.142) we must set /62
p =r.

In order to determine the stress acting on any plate cross section, we
must have the expression for the bending moment.

The bending moments in the radial p and the tangential t directions act
at any cross section of the plate. The radial bending moment is determined by
formula (I.133). A similar dependence holds for the bending moment M

M,_:D(T"+yif;). (1.144)

Taking the fact into account that the bending moments acting in the radial
direction are the largest, we may confine ourselves to investigating expression
(I.133). According to equations (I.115), (I.116), (I.118) and (I.119), the
bending moment Mpl’ acting in the inner section of the plate ¢ < p < rk)

will have the following form
— Cs P
M, —D{Cu(]-}—v)——P—;(l——v)—}—EE[QIn—R%(I—{-v)-}-
+ (.

For the external section of the plate (rk < p < R) we obtain the following
in a similar manner

M, =D{c11 a +y)_%(1_v)_—$[2 In£ (14 +
+ (1 -}

The bending moments at any plate cross section which is chosen arbitrarily
may be determined by equations (I.145) and (I.146).

(1.145)

(I.146)

Setting p = r in formula (I.145), we obtain the expression for the bending
moment in the rigid center, which is a calculated value, since the maximum

value of the bending moment Mp is

Cu
Mo = D{Cu(l ) — =2 (1) +8TPD [2 ln% (1-Fv) + (1.147)
+ (=1
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The bending moment at the plate seal may be found by setting p = R in
formula (I.146)

Mgy = D[ Cia (1) — 2 (1 =) + 2= (1= |. (1.148)

On the basis of the value (I.147) of the maximum bending moment , we may
determine the maximum stress

o = Momax (1.149)

max hz »
where h is the plate thickness.
In addition, we obtain the expression for the relative ring deformation

(see figure 37). According to formula (I.130), the absolute change in the
ring radius ryp comprises

_ BR? (Mpy —Mp)
x EbH?

Setting p = rg = kR in expression (I.134), we find the product
(kR)2 (Mpz_'Mpl) = D[(kR)z(l + ") (Clg—"C“) + (l —-y) (021 -

I.150
—Cyl. 1.150)
Taking into account the values of the integration constants (I.138), we
obtain
{Elx[kﬂ—(r—y][l +2lnk] EJo (1 —h2 ‘,
R x (1R x
o P ’ X[l—(i) (l+2ln£)—21nk ¢ (1.151)
12— Yu =~ =T
8nD r I
ol ool =()]
l R +E/,(1—kYH}L kR J
and correspondingly
p 2E./x(l'—kz)l[ln—R~+lnk]—l—E.lenk[(kii’—y——le
Cp—Cp= 7% (1.152)

4rD 2DkR[,_(—) ]+EJ (l—k’)[l—<;?é—)2J

Substituting expressions (I.151), (I.152) in formula (I.150) and performing
transformations, we obtain

(kR)z(Mpz—Mp.)=P.E_J"’z{'"%“*kz’"k”“k[‘( J1}

e )

Substituting the expression obtained in equation (I.130) and substituting

(I.153)

bH
Tx =12
form for determing the ring deformation

in the numerator, we obtain the. computational formula in its general
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o -0 — 9 —mme[1—(£)’]
Ve 2DkR[l — (—;—)2} + Bl (1 ;_kz)[lt_ (5)2] R (1.154)

We may determine the relative ring deformation from the following relation- /64
ship
Emay = A
max e e ! (1.155)

from which we obtain the following, on the basis of Hooke's law
max = E€may- (1.156)

[+

We may represent expression (I.155) in the following form

- 2
1n~R—(1—k2)—k21nk|—1—(£) ]
PH r? r ALV

B = 2D,K[,_(%)2]+Elx'(l,—k2)[‘“(iz%ﬂ

Substituting

Eh3 EbH3
— al x =

12(1—v2) 12 °

in this equation, we obtain

ey In %(1_'kz)—k21nk[1—(i)2]

e = — r

I O O o e p ey |

Introducing the following notation

£

b=I1r g, =L - _ b
R> TR Ty = o

we may write
1 , 1 V2
3p (ab)z e (l~k“)—k21"k[l—(a_b) ]
€max = — , : .
nEH2\ R aﬁ . 8 a 2
2(1.‘_\,2)(1—‘%)4-7(1—kz)[1—<7) J

Employing %%ﬁ? = m to designate the constant factor, we obtain the

following dependence in the final form

1 1\2
(l——k2)ln~—k2[l—(—) ]lnk
Emax=(05_b)2 %b %b

m k aﬁ

1—

*p

a—ad)+-E a—m [‘—(T

>2J ’ (1.157)
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which is shown graphically in Figures 39 and 40.

€
All the curves of Aax

with a constant height of the ring H = 10.35 mm and an outer radius of R

= f (k) were compiled for the constant ratio

1
T 42,
42 mm.

1 =

Several conclusions may be derived from the graphs, which may be employed to
design elastic elements of the type under consideration.

Emax
m

13
12
71

10

07, 0.7
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| y B—
MNNNN=

—r 1,

SN NN
—
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i

4]

l_;

L
Figure 39. Graphs of the Dependence €max = f(k) fora b= %'anda.b = 0.

m
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The problem of the ring location (radius ry) is very important for ob-
taining its maximum deformation (€max). The graph of the function €max shows
i
that the radius rj may be advantageously selected close to the imner radius r
of the elastic element. For example, for plates with the coefficient ab==-%

(see Figure 39) we can recommend k = 0.25 and 0.35.

m
S N
6 /-
/
5

3
2 ” /,//"\
Yh —pap
L
4 ’/
A =05

0 —— b — A4k : :
23 04 05 06 07 08 09 «

S\X\&\\ S ESSSAAIE k
- "o NN O S \\“:;\\ AR R R R WY

|.r\\‘ = TIIRRNTRY
T -1
o I P R4 —
\\\\\\\\\\\\\\\\L =k s R
ﬁ\\\\\\\ N i \Wb “t‘\’ “\ﬁ
' Rz

Figure 40. Graph of the Dependence
Brax

- 1 1
n =@ for a= —anday =

ax - f(k) also show that, within definite limits of a

€m
The dependences
€max . . . . .
inereases with a decrease in this ratio.

change in ap = %-the quantity
In addition, a comparison of the curves compiled for different values of %

&
shows that the quantity D3X jecreases with an increase in this ratio. For

purposes of comparison, tne curves corresponding to the case of a solid plate
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without a ring @ = 0) are plotted by dashed lines in the graphs. These curves
show that a decrease in the ring width b increases its deformation.

A study of the function (I.157) makes it possible to determine the ratio
Ohp = %, .at which the quantity ®max acquires its maximum value. Differentiating

the function (I.157) in terms of H and setting it equal to zero, we obtain the
optimum relationship

—(=)?
ozg:(l—vZ);s’_k"2 [1‘[1 (kz]) ] ) (1.158)
—a

Let-us give a numerical example. Let us set P = 1000 kgf,R = 42 mm, r =
=6mm, rpy = 23.5mm, H=10.35mm, b = 1 mm, h = 4.35 mm; the plate material

is steel 40X, op = 100 kgf/mm’, E - 2.1 - 10° kgf/cm® and v = 0.3.

Substituting the numerical values in expression (I.138), we may determine
the integration constants: Cll = 270 - 10~ 1/cm; 021 = 346 + 10-2 cm; C12 _

= 214 - 1072 1/cm; = 650 10-5 cm.

€22

In addition, employing formula (I.142) and setting p = r, we may find the
maximum deflection of the plate Voax o 0,0132 cm.

Let us determine the bending moments acting at the rigid center and at the
seal, The maximum bending moment at the cross section p = r may be obtained
from expression (I.147):

M — 224 kgfn.

pl (max) =

The bending moment at the plate cross section p = R may be found according
to formula (I.148)

MF2 = T&kgf cm.

According to formula (I.149), we may now determine the maximum stress
Gax = [ 150kg e,
Based on equation (I.154) we may calculate the absolute displacement of
the end point of the ring cross section Ark:
Ar = —0,00256 cu.

The minus sign in the result obtained indicates that the direction of /68
the bending moment acting upon the ring must be-changed to the opposite direction.
The relative deformation of the ring equals

£nax = 0,00109,
and, consequently, the maximum stress acting at the edge ring fibers is
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max ox = Eep,y = 2290kg £/cM?.

In addition, it is of interest to compare the results obtained with the
computational data for a customary circular plate without a ring. We obtained
the following for a circular plate with a clamped outer edge, having a rigid
center r and loaded by the force P in the center, according to the eguation
(1.8)

Umax = 0,0145 cu.

This value exceeds the result obtained based on formula (I.142) by approx-
imately 10%.

We may find the maximum bending moment for a circular plate without a ring
from expression (1.9)

M, oy = — 236 kgf am

which exceeds the result obtained according to formula (I.147) by approximately
5%.

This comparison shows that for preliminary determination of the maximum
stress and maximum deflection of the plate formulas (1.8) and (1.9) may be

employed.

The following is recommended as a preliminary calculation when selecting
the dimensions of an elastic element. Employing formula (1.9) for a customary
circular plate without a ring, we may make a preliminary determination of the
maximum stress at the cross section p=r, selecting the plate thickness h so
that %max < [0]. In addition, employing the graphs of the dependence (I.157),
for the determined ratioap = X (see figures 5 and 6) we may find the maximum

R
of the function and, consequently, the numerical value of the coefficient
Tk
k = R

Since the stress produced at the edge ring fibers may be given in several
cases encountered in practice, based on formula (I.156) we may find the relative
deformation of the ring maxo Determining the constant coefficient

max -iT_J& ‘

3P € : ,
m == and knowing the value Eax, based on the graphs compiled for the given
ratio B = 7, we may determine the computational curve and the corresponding

R
value of the coefficient ap = %3 with which the plate thickness is determined. /69

If the value of h is less than the value assumed in the preliminary
calculation, another check must be made of the effective maximum stress, em-
ploying the formulas given above with allowance for the concentric rib.

In conclusion, let us compare the theoretical data with the experimental
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data.(l)

Elastic elements with the following parameters were prepared in order to
make an experimental check: k = 0.03; 0.5 and 0.7 in the case ay = 1,8-= =
and ay = 0.42. The experimental data for three elastic elements are shown in
Figure 39 by the black dots. A comparison reveals a good agreement between the
experiment values and the computational values.

4. Elastic Elements in the Form of a Body of Revolution

Another type of elastic element which employs the winding of strain gauges
is an element consisting of two cylindrical casings 1 and 2 connected with a
rigid ring 3 (Figure 41) (Ref. 26, 22).

L
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Figure 41. Elastic Element in the Form of a Body
of Revolution

Due to the difference in the radii R, and Rl’ under the influence of the

2
concentrated force P the casings and consequently the ring, which is connected
with them, are deformed. The deformation of the ring 3 is employed to obtain
the electric signal from the strain gauge ring which is mounted on the side
surface. In this respect, this system does not differ from the preceding
system. If the direction of the force is that shown in Figure 41, then the
wire mounted on the lower section of the ring is elongated, and the wire mounted
on the upper section of the ring under a certain stress is compressed.

In the case of comparatively small geometric dimensions, such an elastic
element has great rigidity. It may be employed for considerable loads (on the
order of 100,000 kgf). The transverse cross section can have a very different
form. When the form of the transverse cross section is selected, an attempt

(1)Several elastic elements of this type were tested at the electrotenso-
metric laboratory of the Nauchno-Issledovatel'skiy i Konstruktorskiy Institut
Ispytatel'nykh Mashin, Priborov i Sredstv Izmereniya Mass. (NIKIMPa).

110
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must be made to obtain the maximum signal, other conditions being equal (from
this point of view, there is a certain optimum variation). An attempt must also
be made to produce an elastic element which is simpler to manufacture. In
addition, the form selected for the ring transverse cross section must not lead
to unjustifiably complex calculations, which also was taken into account in this
study.

rﬂra V72777 Z Z s v,
h _
a e St
2nhy . Xy E Xz L/) A} 1’
Xz j X1 ) XIW X’ Xl \])Xz
P P _ 27R, x
2R, .
X, xAlh e K
%7' VA - N7/ = Figure 43. Calculational Diagram of
/// = | 3+ a Cylindrical Casing
% 2L % . V74w,
2y A%
P X i
R, P _l%_ 27R, Let us study a ring having a
Xy /] 7Ry 2y X; rectangular cross section. An elastic
] e Xy element is customarily designed so that
h R, 2 the ratio of the cylindrical section
o : ~ width to the radius of the middle
l surface is small. Therefore, let us
777 7 employ the theory of thin, symmetrical

cylindrical shells.
Figure 42. Calculational Diagram of
an Elastic Element Separating the elastic element
(Figure 41) into the component parts
and replacing the action of the
discarded parts by the corresponding stresses, we obtain the computational 171
diagram (Figure 42). 1In order to determine the unknowns X5 Xg and X,, X, which

represent the forces and moments distributed over the shell edges, we must employ
the conditions of compatibility for the displacement of cylindrical shells 1, 2
and the ring 3.

U+ 0, =0;
91+62=O;
846, =0; (1.159)
v2+ Ux ::0,
where vy and 61 are the displacements of shell 1;
vy and 62 displacements of shell 2;
Vi and ek displacements of the ring 3.

In order to satisfy condition (1.159), we must determine the displacements
of the shells and the ring, and we must express them in terms of the unknown

quantities Xl’ X2’ X3 and XA’ Let us study a circular cylindrical shell 1 having
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the radius Rl. One edge of the shell is rigidly clamped, and the distributed

stress X1 and the moment X2 act on the free edge (Figure 43).

The general case of the theory of the deflection of a thin cylindrical
shell has been studied in the works (Ref. 4, 12, 14).

The ratios of the dimensions for the cylindrical sections of this type of
elastic element are such that there are short cylinders, according to standard
terminology (Ref. 4). Nevertheless, in the overwhelming majority of cases, it
is possible to employ a solution for the so-called long cylindrical shells.

It is thus necessary to determine the magnitude of the error which is introduced
in the solution due to the simplifications assumed. Thus, we shall not make
simplifying assumptions regarding the shell length. In the absence of internal
pressure, the differential equation for a circular cylindrical shell loaded

symmetrically with respect to the longitudinal axis has the following form, as
is well known

=0, (1.160)
where
a, _‘/sa—vz)_ (I.161)
RY-#?
Let us introduce the dimensionless coordinate
E=aqax, (1.162)

To replace the variables, let us successively differentiate the function

v{(E) = v(a « x):

& a AT
/u= d% . d& a%: d3o as;
de3 dx dss 1

0
oIV - 40 dg a3 = o

det  dx ' g T

Substituting the value obtained vIV in equation (I.160), we obtain

“

The solution of equation (I.163) in the form advanced by A. N. Krylov has
the following form

0 =¥, +CY, 4+ CY, +CY,, (1.164)°
where Y 2, Y and Y4 are the Krylov functions;

Cl’ C2’ C3 and C4 - the constants determined from the boundary conditions



of the problem.

The Krylov functions have the following form:
Y, =ch& cos&;

Y, =%(ch£sin€ 4-sh&.cos&);
(I.165)

Y3'=%sh5-sini; 1

Y, =%(ch£sin£—sh£-cos£)

. /
and, as is known, they have the following properties: in the case £ = 0 Yl(O) =

=1; Y2(0) = Y3(O) = Y4(O) = 0.

Let us place the origin at the seal. In order to determine the arbitrary
constants, we have the following boundary conditions:

For§=0 v=0and v' =0 ‘ '
(1.166
For § = a,l v = X and v X )
Da? Da}’

where D —- the cylindrical rigidity, equals

=._EP
12(1—vg) °
Satisfying condition (I.166), in the case £ = 0 we obtain
Ci=0; C,=0.
The conditions at the shell edge lead to the following two equations: 173

g

X
Csyl (a,0) + C4Y, (a, ) = =2 I

Daj (1.167)
—4Ccy +CY _ %
37 s(a,) 47 ((a;) 3 "
P Da;
Solving equations (I.167) concurrently, we obtain:
C, = _ Yien e ( Xs X ) ‘
X . 2 2 3 s
oan Y@+ Yien \PaY,wn DY, o)’ (1.168)
04 — 4Y1 (all): Y4 (ad) ( Xz + : Xl ) i
2 2 .
Y, @Y etan Y @an \PGY @y DY 0y ) )

With allowance for the statements given above, we may rewrite the solution

of equation (I.163) in the following form
. v=CY; +CY,,
where “the constants C3 and C4 may be determined according to formulas (I.168).

(1.169)

We may find the angle of rotation of the shell cross section by differentiat-

ing expression (I.169)
0 = Cya;Y, + CngYS' (1.170)

66



In order to determine the size of the quantities contained in equations
(1.169) and (I1.170), let us present a numerical example. Let us assume that
the following geometric dimensions of the shell are close to those which are
customarily employed: Rl = 4.1 cm; h=0.25cm; 2 = 1.5 cm.

For the subsequent discussions, we should note that the zone in which the
edge forces act in practice is delimited by a narrow band at the loaded edge,
whose width is on the order of half of a wavelength.

Therefore, it is customarily assumed (Ref. 4) that a long cylinder is one
in which the length is greater than half of a wavelength

1> 5 "V Rd
i
1 Y 3(1—w
which yields the following in the case v = 0.3
[>25VRh. (1.171)

In our case, % = 2.5 V4.1 . 0.25 = 2.5 cm.

Consequently, we have a short cylindrical shell, since condition (I.171)
is not satisfied. However, we shall show that in the case under consideration
and for this ratio of the shell geometric dimensions, we may employ the
expressions for long cylinders with an accuracy which is sufficient for engineer-
ing calculations.

Substituting the expressions (I.168) in the solution (I.169), we obtain [74
the value of the maximum deflection in the case £ = £(R) = al
Uy = (a'y’ t2:) + B.Y, (a,l)) l;_ + (—1— By — ——aly' (a,l)) "X_la' ’ (1.172)
Y’ (a.d) yl (‘11”' Dal 4 Yl (a,l) Dal
where
oy = Y‘ (a,l)'Y‘,_.______(a,l) 3 and B]’-L 4yx (ﬂxl)'ya (0102
4Y: (a,) ~Y‘ (a ) + yx (axl) 4yl (axl).yc (asl) + Yl (ay))

Let us examine the coefficient for X, in formula (I.172)

Ve _ YieoYian=YianYi@n

1
4 P Y, @Y, @n+ Y @n (1.173)

Y
1 (asd)
Taking the values of the functions (I.165) into account, we obtain

1. :
Y e Yian—Y, @'Y, @n= sin@dcos(al)—

(1.174)
———%—ch(aID-sh(aIO.

We may find the numerical value of the dimensionless coordinate § for x = &
from expressions (I.161) and (I.162):
E() =a,l =22.

A comparison of the numerical values shows that the first term in expression
(1.174) may be disregarded.

Changing from hyperbolic functions to exponential functions, we obtain
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28 (O ,—28(D)
Y . — . ~ I [ e " —¢
1 (asd) Ya(a;l) Y,(a,t) Y, (ash) ~ 2 —‘*—Tﬁ .

Disregarding the quantity e'2£(2>, we may assume the following with a great
degree of accuracy
L g2t

——e

e Yian =Y @Y, @n™=
Similarly, we may find the value for the demominator of expression (I.173)
1
: 2 ol P2
Y o Yi@ntian=5"
Consequently, expression (I.173) assumes the following form

1 Y (asl) 1

By = (1.175)
4 Y: (a,l) 2

In addition, let us examine the coefficient for Xziin formula (I.172)

2
o .Ya(axl) +Bl Y4 (a;l) — Yl(all)'yl (all)+4yt(“|1)

Y - .
+(a4l) Vi Y, Y @n+ Y
Similarly, we obtain /75
Y Y
(aif} [4 1
oq By e (1.176)
2 (ayl) 1 (ail) 2

When the values of (I.175) and (I.176) are substituted in the formula for
deflection (I.172), we obtain

g = K (1.177)
2Da? 2Da}

Expression (I.177) fully coincides with the maximum displacement obtained
from the theory of a long shell loaded at the edge by the distributed force Xl

and by the moment X, (Figure 43). Making similar transformations, we obtain

the following. expression for the maximum angle of rotation of the shell cross
section 1:

X X
0, —— 1.4 X2
! 2Da} +Dal (1.178)

Let us find the maximum values for the deflection and the angle of rotation
for the second shell in this way:

Xs X

Uy = B I.179

* 2Da 2Da} ¢ )

9, =Ko __ KXo (1.180)
2Da§ Da, ’

where

a 4 /30— (1.181)
i RIn?
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It is assumed that the thickness of both shells equals h. It is tnus
apparent that when all real constructions are calculated, the substitution of
the equations for a short shell by the expressions for a long shell leads to an
insignificant error,

Let us illustrate this with a numerical example. Let us determine the
precise value of the displacement of the shell vy according to formula (1.169),

and let us compare the result obtained with the approximate value which is
determined by formula (I.177).

For £(2) = 2.2, we have the following values of the Krylov function:
Y,(2.2) = - 2.6882; Y2(2.2) = 0.5351; Y3(2.2) = 1.8018; Y4(2.2) = 1.5791. Let

us investigate the case of the loading of the shell 1 by the moment X Accord-

2°
ing to formula (I.169), we obtain the following with allowance for the expression
(1.168)

2
V.eoYent+t4 ey X

Ul=
. 2
Yen Y en+tY ey Dd
Substituting the values of the Krylov function in the expression obtained, /76
we have

9, = 0,484 %2
Daf

The corresponding approximate value of the displacement may be determined
according to formula (I.177)
012505<Zl.

2
Day

Comparing the results obtained, we find that the error due to replacing
the precise equation (I.169) by the approximate expression (I1.177) amounts to
approximately 3.367%.

Therefore, we shall employ the

p expressions for long cylindrical shells
Zrh Z%E ety =] (1.177) - (1.180) everywhere below with
X - 4 (J,b X an accuracy which is sufficient for
_QQQAWECN\ _ Al ! ’ engineering calculations.
- - _— X
] 5}/ X5 X '// K T In addition,.let us s?udy.the ring
9\“j == - NV 3 and the deformation of this ring may
p
] Ry - A 7R, be expressed by means of the external

force P and the unknown quantities

Xl, X2, X3 and XA' We shall assume that

the ring is a beam having small curvature,
since the ratio of the ring width to

its radius is small. It is assumed that
the transverse cross section of the ring

271'/?3

Figure 44. Calculational Diagram of
the Ring
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is rectangular with a height of by
and a width of hk‘ Let us introduce

the notation Bk = In particular,

by
by
in the case By = 1 the ring has a

square cross section. Just as previously,
we shall disregard the mechanical
resistance of the strain gauge mounted

on the ring.

The notation for the geometric
dimensions of the ring and the forces
acting upon it may be seen in Figure
44. Let us find the bending moment
in the ring cross section. Let us
investigate successively the influence
of the individual external loads
based on the law of the independence
Figure 45. Element of the Ring of the action of the forces. The

intensity of the moment (distributed
over the mean circumference of the
ring) produced by the action of the force P equals

__ Pn,
2R,

where /77
hy
RK=R1+T=R2—‘—}I2L.

my

Representing the effective moments in the form of vectors (see Figure 38)
and compiling the sum of the projections of the vectors on the vertical axis,

we obtain - .
2M, = [mysindds = [ m;R  sin ydy.
0 0

We thus obtain

Ml =PhK .

on (1.182)

Expression (I.182) determines the bending moment produced in the ring cross
section due to the force P.

In addition, let us calculate the action of the distributed forces Xl’ X3
and the moments X X4. Let us separate the element of the ring (Figure 45),

2,
and let us find the differential of the total moment due to the forces X1 and

X3
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hK KhK
+X3(Rx+"§')dq’[32 [
from which we obtain
2x 2=
- — Px \ Bl (g B\ Baie
m—X‘(R" 2) 2 jd‘l’+x3(R"+ =) jd“"
o 0
We finally obtain
h

m= ﬂpxhx [Xl (Rlc—‘hz_K') + Xs (RIC—}_ "215‘)] .

The magnitude of this moment equals

et (n )+l )

Calculating the sum of the projections of the moment vectors similarly
to the manner which was used for a strain gauge having the form of a plate
with a ring (see Figure 38), we find the expression for the bending moment

oM, = oj’ maR csin i = B[ X (Re -~ ) + XaRe 4+ 7).

from which we obtain

Mz = ﬁ;;hx[xl( x—'hz—K) +X3(Rn +—,12L)]

Let us study the action of the distributed moments X2 and X4 /78
2
0

2n 2 2n
dm = ijldsl +X4jds.z = Xef(Rn__”QL)dq, +x45 (RK —{—h—;)dxp,
0 0 0
from which we obtain the following, after performing integration
h
m = 2x [XZ(RK——%") + X,A(Rk +7*)].

The magnitude of this moment equals

(1.183)

my =

[ %2 (Re %) + % (e + )| |

R

We may find the bending moment just as previously

2M, =T8‘m3R,‘simpdxp =
0
:2[X2( =) X (Re + 1'2—)]
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from which we obtain

M3=X2(RK—-E§)+X4(RK+%)‘ (1.184)

Summing the expressiomns (I1.182), (I.183), and (I.184), we obtain the value
of the bending moment acting in the ring cross section

L Phe  Bihy A e NT
bend 2n 2[&(“ ‘2)+X%R”+2)]

[ (et en(eer )

Introducing the notation

e
2R,

’

we may write the following in the final form
= Ple _ Ribahy — k) 4+ X5 (1 — R [X,(1—
o P Rl 1 (1 —£) - Xa (L4 )] — Re X
— k) + X (1 +R)1-

Knowing the expression for the bending moment (I.185), we may determine
the displacement of the ring. /79

(1.185)

The maximum stress in the ring equals

xnaxzezlﬂhgng (1.186)
14
where W is the moment of resistance
L
6

We may find the maximum relative deformation of the ring from the following
expression

M
By = 2% _bend (1.187)
E WE

On the other hand, we obtain the following from geometric considerations
Cmay = X5 (1.188)

Ry

. == Pxfix
* 2 F (1.189)

We obtain the following from expressions (I.187) - (I.189)

o, = Mpend Ry (1.190)

EJk

where

[33 4l

J =k
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is the moment of inertia of the ring cross section.

According to formula (I.189), we obtain
6M
0, = 2 bf’;d Rk.
GpZ A}
Substituting the value of the ring bending moment in the expressions (I.190)
and (I1.191), we obtain

(1.191)

3p 3R? 2
o —— PRe | e x (1 _p)y R
nERZh2  Ep K2 EB, 2
6R2 6R2

+ Xo(1-+5) +
EB2 i3 Ep2n3

KK KK

Xa(1 442+

Xy (L—k);

6PR 6R2 6R?
— Xy (1= k) 4 — ok
nipdnd o Ep2nd EpZnd
12 R2 12R2
X (1B
E
X X
Thus, all of the terms contained in the condition of compatibility for
the displacements (I.159) may be expressed in terms of the external load and
the unknown force factors. /80

Xy (1+4) +

+ Xy (1 —k).

The use of the first of conditions (I.159) leads to the following equation

I=B1—05) ) RAX, =Y/ 31— (1 =B X,— (1 + B+ (1.1
+0,58) Y RAXs + 1/ 3(1— ) (1 + B)X, = 0.
Satisfying the second condition (I.159), we obtain

(1 =R RehX, —29/3(1— 9 (1—0,56) VR X, — (1 +
R RAX, +2 1/ 3(1 =) (1 +0,56) )/ Rt X, = 0. (1.193)

Correspondingly, for the condition el + Gk = 0, we obtain

[33,,h2R2 (1 — k) — 1/ 3(1 — ) BAAR, (1 — k) | X,
+ [613R2 (1 — k) + 2/ 13(1 — )P B3- 1t (1 —0,5k) VRK.h] X, 4+ (T.194)
+ 32, BOR2 (1 + ) X, - 613R2 (1 + &) X, — 3h AR, i; =0,

and we obtain the following from the fourth condition of compatibility for
the displacements

3B R (1 — k) X, - Gh2- R2 (1 — k) X,, + [33,h A?R2 (1 -+ k) +- (1.195)
2V 30— AR YV RA(1 4 k) (1 + 0,5%)] X, +
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+ [612R2 (1 + k) — 2/ 3(1— ) B2A2R, (1 + B)] X, —
— 81 h2R L= 0.
The following simplification is made in equations (I.192) - (I.195):

V1—k=1—05kV1+k=1+4+0,5 k.
Consideration of the third term of the binomial series shows that for

(1.195)

k = E]RL = -7—2 the error of this approximation does not exceed 0.25%.

The form of equations (I.194) and (I.195) shows that their summation
leads to an expression having a simpler form:

V31— )BA V/ RA(l — k) X, — 27/ 3(1— ) B (1 —
— 0,5) X, + 2Ry (1 + k) (1 4 0,5%) X, — 21/ 3(1—#) YV R (1 +
+ k&)X, =0.

We now have the four equations (I.192), (1.193), (I.195) and (I.196) for
determining the four unknowns X., X,, X, and X,. Solving these equations, we
obtain 1 2 3 4

(1.196)

3 o P P2V B — Dl (141, §k)+21/3 11— VRA (144,

—vhpdnt VR i +12]/ [3 (1 —)} B2A2A%R, + (1.197)
—|—24V3(1—v ) B h RVR,Jz +241/3(1 v¥) R243

X, =

pl/s(l — ) B V ra (1+k)-|—2]/ 3(1— ) Ryh (14:0,56),
6 (1 —v2) pnt VRKh 412 1/ [3 (1 — )P B2n2h%R, + (1.198)
+ 24 l/s (1—2) B AR, ]/;x; + 24 f/a (1—v?) RZA3

X, = 3hnh? ~

X, = 3 P2y BU— P 0 —1,50 +2V 30—V Rkt )
3 —_—— - L :
T

6(1—3)pty RA + 123 [3(1 — )3 p22A%R, +- (1.199)
+24V3 (1—) p,gz,gz2RKV1§z+24i/3(1_vz) RZh3,

p]/3(1 — ) Byhe VR,\Iz(l —n+2Y 30— R (1—0, 5)
T (1 —v?) Y Rt 12} [B(L—) BZAR, +
4 24 ]/3 (1—v) gKhKhQRKVEﬁ— + 24V3(1 —v9) R2 3.

X, = 3h 2=

(1.200)

The quantities Xl and X3 have the dimensionality of forces distributed over

length, and X2 and X4 have the dimensionality of distributed moments.
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The above expressions show that Xl > X3 and X2 > X4. The following con-

clusion is thus reached: a cylindrical shell 1 (see Figure 42)-undergoes greater
stress as compared with the cylindrical shell 2.

In addition, substituting the values of (I.197) - (I.200) in expression
(1.185), we may determine the bending moment of "the ring

Pn, 6 (1 —v?) 3t
A%eﬁ?'g;‘ - ‘ o

61— gt +12) (30— g2V Rok+ |-
[+24)/ 3(1—2)3 8,k AR 4-24 44/ 3(1 —)RA2Y Rk}

Assuming that the thickness of the shell wall H = 0 in the relationship
obtained, we may find the bending moment for a free ring

— . Phy
bend 0 2 (1-201)

Thus, .the thinner the thickness of the walls h of the shell, the more
closely does the computational result correspond to the value of (1.201).

Let us introduce the following notation

¢ RK ‘3 hK. . (I 202)

With allowance for these notations, the expression for Mbend acquires the
following form

S (1 —v?)p3s?
Mbend"'Mo T T

(=B + 0,5 B — e 8,V ky +
S 4 T S
+}/-3(1—v2) ﬁxk1k2+]/3(l_vz)l/kl 'k% J

The maximum stress in the ring may be found according to formula (1.186)

.

(1 —+%) pR?

maxoy =gy j—————- - ] - —
! =22 +0,5) 31— 2,9 &y + (1.203)
. 4 -
+Vsa—w s+ 30— V k4

where % is the maximum stress of the free ring:

3P
g =
Bk

Employing Hooke's law, we may find the expression for the relative defor-
mation of the ring 2y p3p2
PP S e -

(1 —2) %% 40,5 V [Sm B2k, V—k—l_ +
- L YA VA
+V3(l___yz) ﬁxk1k2+1/3 (I—v3) Vkl i)

(1.204)
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where 3p

8= 2,2 "
TEB My (I.205)

Employing formula (I.204), we may design the elastic element so that the elec-
tric signal is adequate in terms of magnitude.
The function e = f(h) is represented graphically in Figure 46, from

which it may be seen that in the case h = 0, the function acquires the value of
(1.205), which equals the relative deformation of a free ring loaded over the
edges by distributed forces. When the relationship €nax = f(h) was compiled, /83

it was assumed that all other parameters

Emar ; of the elastic element were constant:

[3 = . = . - . =

58 Rk = 3,6 cm,,hk = 1 cm; Bk =1; v=0.3.

The graph presented in Figure 46 shows
06 - that in order to obtain the largest sig-
\ nal of the electric strain gauge, it is

gy N - advantageous to select as small a thick-
N ness as possible of the cylindrical shell

0z S h. It is apparent that the selection of
. [ this value is limited by the largest

2 af a7 a3 hem stress acting at the danger point.

Let us study the problem of stresses.
The computational diagram (see Figure 42)
shows that cylindrical shells 1 and 2 are
loaded over the edge by uniformly distri-
Jﬁzizzfoﬁ. buted forces and moments, and also by
€0 distributed forces acting normally to the
cross section. The cross sections in which
the edges of the shells are combined with
the ring are dangerous. In these cross
sections, the bending moments due to the distributed radial forces X1 and X3

Figure 46. Graph Showing the
Dependence of

equal zero, and the bending moments due to the radial moments X2 and X4 acquire
their maximum values. Allowance must be made for the action of the force which
is normal to the cross section and distributed over the edge.

We shall study a cross section connected to the cylindrical shell 1 with
the ring 3 (Figure 42). Taking into account the action of the moment X, distri-

buted over the edge of the shell 1, we obtain

__ 58X,
maxosﬁ_—Er_ (1.206)

Substituting the value for X, in expression (1.206) according to (I.198)

and performing transformations, we obtain
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. ‘-
ap I{l/s (1) Bofey (14 B +2 Y 31— V bty (1+_9.5k)]|
maxe —=——— . e —
sh anRl (1.2 [32.’52—{-0,5]/ B —v2 eV R+ ) )
4 (1.207
( +3V1 — 2 Bk Ry -+ ]/3(1—-;&) ky k3
The action of the force normal to the shell cross section leads to the
normal stress
G, o __P_ -
COm™ oriee '
or in other words [84
— . P
com 22R,n (18 (T.208)

The maximum stress acting at the danger point of the elastic element may
be determined by the sum of the stresses (I.207) and (I.208).

In conclusion, let us present a numerical example. Let us give an elastic
element with the following parameters which determine its construction: The
concentrated force P = 5000kgf; the average radius of the ring = 3.6 cm;
height of the ring cross section bk = Bkhk = 1 cm; Bk = 1; wall “thickness of

the cylindrical shell h = 0.25 cm.

The material of the elastic element is 40X steel: the yield point is
Op = 10,000 kgf/cmz; modulus of elasticity is E = 2.1'106 kgf/cmz, Poisson coeffi-

cient is v = 0.3,

We may find the relative ring deformation based on formula (I.204), substi-
tuting the values of the following coefficients in it:

h 1 A 1 1
e L AL B 0,00046-
k=op, 7.9 M Re 14,4’ % p, g7 Tmax

The maximum stress of the ring equals
HMXOK==8m“-E==97Okgf/Cm2
In addition, let us verify the stress at the danger point of the shell. We
obtain the following according to formula (I.207)
max GShe:.if750 kgf/cml

and, according to expression (I.208),
%OﬁleOOkgf/cm%

The total maximum stress at the danger point comprises

9ot= 5750 kgf/cm

The computational result shows that the total stress of the shell is quite
large. The strength reserve determined by the yield point of the material com-
prises approximately 1.75. Attention must also be called to the ratio of the
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stresses produced by the deflection and the compression: the latter comprises
about 20% of the former. Thus, it is not recommended that this quantity be
neglected in the calculations.

It follows from the above numerical example that the mdximum stress in the
ring 3 is comparatively small at the danger point of the cross section of the
shell 1, It is dimpossible to increase this stress by a reduction in the wall
thickness h, since the stresses in the shell are large.

The fact must also be taken into account that, in the case of overstresses
of the elastic element material, there will be a different type of imperfection
of the elastic elements, making its metrological properties worse. Thus, the
nonlinearity of the elastic system also increases. An increase in the relative
deformation of the ring, which is necessary in order to increase the electric
signal of the strain gauge, may be obtained by changing the form of the ring
cross section. This problem will be studied below.

In conclusion, we would like to give certain recommendations for selecting
the optimum parameters of the elastic elements under considerationm.

In order that the elastic element operate efficiently, it is necessary
that the greatest stresses occur in the region where the strain gauges are loca-
ted. This improves the metrological properties of the elastic element and, in
particular, decreases the nonlinearity, other conditions being equal. However,
it is not always possible to see that the stresses at any point of the elastic
element do not exceed the stresses in the region where the strain gauges are
located.

In order to simplify the discussion, let us introduce the coefficient A
which represents the ratio of the maximum stresses in the elastic element to the
stresses in the region where the strain gauges are located. In our case, it has
the following form

a
)‘=m XUH

max G, (I.209)

/85

Substituting the values of (I.207) and (I.203) in the expression (I.209) and

performing transformations, we obtain

- 1/3<1+2>

1/ 3(1 /k,

(1+4)+ (14 0,5k),
which yields the following for v = 0.3
’~=1,81(1+k)+1,41Vk‘ (1 4 0,5%). (1.210)

Expression (I.210) shows that the coefficient A is always greater than
unity.

However, by means of the relationship (I.210) we may select the geometric
dimensions of the elastic element so that the stress at the danger point of the
shell cross section is not excessively high as compared with the stress in the
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ring. Let us illustrate this with a numerical example, TFor an elastic element
with the dimensions Rk = 5 cm, hk =2 cm, h = 0,1 and Bk = 1, according to formu-

la (I.210), we obtain the quantity A = 3.2, This means that the stress produced
by the shell deflection is approximately three times greater than fhe maximum
stress in the ring, whereas in the numerical example presented above, this ratio
was about five times greater. It is possible to lower the stress in the shell
in addition by increasing the height of the ring cross section Bkhk' Setting

Bk = 2, for example, we obtain A = 2.65.

/86
TABLE 1
Geometric Dimen- Maximum Relative
Deformation €
Maximum sions in cm 8 max
Load P = k )
in kgf Rk Bkhk hk h Experi- Calcu-
mental lated
40 000 5,65 4,0 11,70 | 0,60 { 2,35294 | 0,000395673 | 0,000432934
20000 4,35 2,0 11,20 ( 0,50 | 1,66667 |0,000377700 | 0,000407555
3000 3,325( 0,8 | 1,57 | 0,08 | 0,50955 {0,001183681 0,00115546
18 000 5,65 2,5 | 1,70 | 0,60 | 1,47060 |0,000318171 0,000312977
4 000 2,95 0,8 { 0,80 | 0,10 { 1,00000 | 0,000962619]0,00104767

= e By —]

Y
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! 2Ry _ 2nR,

%\&_ /Yz("'dro,
A . ik e
o 0 A, R
RNIHINNEN ‘\C\ﬂ\ '2—7‘1,72' " 2

|

tﬁ\"‘,.._/,,_,

Zﬂ”z!
Figure 47. Elastic Element with Ring Figure 48, Computational Diagram of
Having Triangular Cross Section. the Ring.
Table 1 presents the basic parameters of several elastic elements D of

the type under consideration. A comparison of the experimental and calculated
values of the relative ring deformation indicates that these data agree quite

(1)The elastic elements were made and tested experimentally at the elec-
trotensometric laboratory of the NIKIMPa.
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well.

It was stated above that the signal may be increased by changing the form
of the ring cross section. One of the variations is an elastic-element whose
ring has a triangular transverse cross section (Figure 47). ‘Being less rigid,
this ring makes it possible to produce an increase in the electric signal from
the strain gauge at the same external load P. 1In order to simplify the solution,
let .us set the base and the height of the triangle in the ring cross section equal

to hk'
A computational diagram of the elastic element is shown in Figure 48.

It is apparent that we may set vk(l) = 0 within an accuracy of terms of

a higher order of smallness. Therefore, the fourthof the conditions (1.159) for
the compatibility of the shell and ring displacements may be simplified and they
assume the following form

Uy + v, = 0;
0, + 6, =0;
0+ 06, =0 (1.211)
01=0.
The expressions Vis Vo 61 and 82 for the shell displacements are known /87

from the preceding problem.

In addition, we must examine the ring deformation (Figure 48) and we must
also express the displacement in terms of the external force P and the unknown
quantities Sl’ X2’ X3 and X4' In a manner similar to that given above, we may

find the expression for the bending moment acting in the ring cross section,

= Pl Pl k )
M pefiay —— Xs(l+7>—RKX2(1—k>—RKX4<1+~’;—>, (1.212)
where
b= 2t
3 R

The unknown force Xl’ as may be seen from the computational diagram, only

extends the ring, whose influence we may disregard. For the cross section
under consideration, we have the following value of the moment of inertia
_ M
" 48
and the moment of resistance
h3
W’_.EZ.

According to formula (I.190), we obtain the value for the angle of rota-
tion
0, — 48Mbend . R
Elz‘?c’ (1.213)
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On the basis of expression (I.189) for the displacement of a point connecting>
the shell 2 with the ring 3, we obtain

24M bend * Rk

YT THm o (1.214)
where
88
R = R1+ h —R —‘—3“‘ K L

Substituting the value of the bendlng moment (I.212) in the formulas (I.213)
and (I.214) and taking into account the sign of the displacements, we obtain

12PR 12R2 &
O = K 1 _) "X 1—Fk
s == o e X (14 5) + (1—8) +
24R2 C R
ER3 ( _2—) (1.215)
24PR 24R2 L
0, =« ( R *X 1—K
nERY  ER} 2)+ hi 2 )
R: X, (1+2) (1.216)
Eh} .2

Obtaining the values of the displacements (I.215) and (I.216), expressed
in terms of the external load and the unknown forces, and having the unknown
displacements from the preceding problem, determined by the expressions (1.177)
- (I.180), we may satisfy the condition of compatibility of the displacements
(I.211) of the shells 1 and 2 and the ring 3:

(=01 = L)V RAXG Y30 —A) (1 =8 X, — (1 4+ £)

x(l+%) x v/ R X, —]—]/3(1———v2)(l—}— ) —0; (1.217)
(l—fe)]/RKth—Q]/S(l~v2)(l——)Xg—(l+~g—)><
xVRAX, +2,/3(1_v2)(1+ ) —0; (1.218)

—V 83— RS (1 — ) X, + [2 V B —APY RA x
X ( 1 — _’;) It 4 24R2A3 (1 k)]x2 + 12R%h 43 (1 T %) X, +
+24Rgh3(1 + i) X, — 12 PRSI . (1.219)
T

— _.__! 2 —
( )/R,JLX1+;/3(1 ) X, — 0. T.220)

The solution of the system of equations (1.217) - (I.220) leads to the
following values of the unknowns:
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P Vaa—w -V Rauieh, A+5)

=2 —k 1.221) /8
1 [V iBa—wr Vegst+12Y 30— VR,JIX ( ) /(8
X Ry h? b + 48R2 1%]
X 122 RH3h, (1+ )
[]/[3(1_"2)]3 VR h h4+l2 '/ 3(l—v?) VR,ﬁX (1.222)
X Rk by + 48R2 3]
P ]/3(1__\;2) VRxhh2 ( k)
H=ln (1.223)
© Y u—wr VRt 12Y 30—y Roax
X Ry h®-h, + 48R2 ]
R h (1—
X4 = 12—}—)— 1 — — ( 44 ) S
4 []/- 3(1—-v2)]3 "/R,tht + 12 /3 (1 —?) VR,‘hX (1.224)

2 2
XR W%+ 48RE A3

It follows from expressions (I.221) - (I.224) that, with a decrease in the
thickness h of the cylindrical shell walls, the values of the unknown forces
and moments decrease. At the limit, for h = 0, the quantities X1 =X3= 0 and
X2=X4=0.

Substituting the values obtained (I.221) -~ (I.224) in formula (1.212), we
may determine the bending moment of the ring

w, P Ph, 1/[3(1_ 12)]3 VR h ht
" Derx 9 4 ah I
- BE—wp VR nhi412y /3(1_ v2) VR ax (I.225)

X Ry h® b+ 48R? 1?

Setting h = 0 in expression (1.225), we obtain the value for the bending
moment for the free ring
P/z,c
M ben&— 2 ¢

With the introduction of the dimensionless coefficients, expression (I.225) /90
assumes the following form

2 25)/[3(1_v2)]3 k2

M 'ben‘d:M0 — >
2 25)/[3(1_,)13 k2+12/3(1—a“) ky kg -

+48 )k k2 -

82



where the coefficients kl and k2 may be determined according to the formulas
(1.202).

We may find the maximum stress of the ring from expression (I.186)
. :
2,25 {3(1—)P &2 -
max o, = g, . - : — -
: 2,251/[3(1_y2)1s k2+l2]/3(l——v2) By by
+ 48V ky k3

T

(1.226)

where
12p

2
i,

Jg =
is the stress in a free ring.
The relative deformation of the ring is as follows
P —
2,251/ [3 (1—2)]3x2

) 4 B — —_— h
2,251/[3(1 —v2))3 % 4 12V3(1 —v2) ky Ryt (1.227)
+ 48 kg kY

€max = %o

where
2P
n:EIzz

is the maximum relative deformation of the free ring.

&g =

In addition, according to the relationship (I.206), we may find the maximum
stress in the shell 1 produced by deflection. Substituting the value of X2

according to formula (I.222) in this relationship, we obtain

- k
P V/k1*2(14‘?f)

— — : 1.228
TR [2,25 Vls(l —2)J k2 -|-12V3(1—v2) Ry kot ( )
+48 Y/ Fy K

maxcsﬁ:72

The stress of the shell, produced by the normal force, may be obtained from
expression (I.208), setting k =-% EE.in it.
Rie

Let us give a numerical computation, taking all of the initial data from
the previous example. We may obtain the relative ring deformation according to /91
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formula (I.227), substituting the following values of the coefficients in it:

_ 2 1., k1 P 1
3 Ry 5.4, ! Ry 14,4_ » 2= Z; ZT’
Enax = 0,0012,

The maximum stress in the ring equals
max o, == £, - E = 2560 kgf/‘cmz

In addition, we may determine the stress at the danger point of the shell 1.
The stress caused by deflection may be determined according to formula (I.228)

maxoc sh™ 7500kgf/0m2

The stress produced by the force normal to the shell cross section may be deter-
mined according to formula (I.208)
2
Qcom = 1000 kgf/cm
A comparison with the result obtained in the preceding example indicates
that the relative ring deformation, and consequently the corresponding electric
signal of the strain gauge, increases by approximately a factor of 2.5, whereas
the maximum stress in the shell increases only by a factor of 1.5. Thus, if
the coefficient )\ equals A % 4.9 in the case of a square cross section, then in the
given case it acquires a more favorable value A & 2.9.

It may be seen from the computation that the stresses in the shell are
rather high. As will be indicated below, the stresses may be decreased by
changing certain geometric dimensions of the elastic element. For example, the
parameter X may be selected so that the stress at the danger point of the shell
is not excessively high, as compared with the stresses in the ring.

According to expressions (I.226) and (I.228), we obtain

8 VR—K”(%“L‘;)’

V 30— 3R

K X
or in the case v = 0.3
— Rl 1 1.229
A =2,3825)/ R % (E + 57 ) : ( )

It follows from the expression obtained that, in contrast to the preceding
example, there are greater possibilities for increasing the coefficient A here.
This fact distinguishes an elastic element with a triangular profile from the
element investigated above.

Let us give a numerical example. We obtain the coefficient A = 1,13 for /92
an elastic element with the dimensions Rk = 5 cm, hk =2 cm and h = 0.1 cm,

according to formula (I.229). This means that the maximum stress in the shell
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for the given dimensions exceeds the ring stress by approximately 13%, whereas
the coefficient is A = 3.2 for similar dimensions of the elastic element in the
preceding example.

In conclusion, we would like to present an example showing the selection
of the geometric dimensions of an elastic element with a ring having a triangu-
lar cross section for the load P = 5000 kgf. It is apparent from:expression
(I.229) that it is advantageous to make this selection so that the value of
VRkh differs very little from unity. For example, setting Rk =4 emy, h = 0.3 cm

and hk = 2 cm and substituting these values in the expression (I.229), we obtain
A & 1.8, Thus, stress in the shell is approximately 80% greater than the stress

in the ring. For the given dimensions of the elastic element, k =-%, kl = %6

and k2 = %6' Substituting these quantities in formula (I1.228) and (I.226), we
obtain the following for the load P = 5000 kgf

maxas = 4700 kgf/cm2

max c = 25650 kgf/cm

The computational result shows that, by employing the relationship (I1.229),
we may select the geometric dimensions of the elastic element in such a way that
the maximum stress of the shell is not extremely large.

Thus, the stress produced by a strain gauge is completely adequate.

5. Toroidal Elastic Element

The external form of this element is shown in Figure 4. Due to its obvious
advantages —— small height, low sensitivity to a transverse load component and
to the noncentral influence of the external force -- it is used more extensively.

Extensive literature (Ref. 6, 7, 10, 17, 20, 23, 29) has been devoted to
designing toroidal shells. The calculation is reduced to solving a system of
differential equations with variable coefficients —— i.e., it is extremely cum—
bersome. Due to the fact that it is necessary to know only the stress in order
to determine the electric signal, the variational methods which are widely em—
ployed yield sufficient accuracy.

Let us obtain the basic formulas by the Ritz-Timoshenko method. As is
known, this method produces a fairly accurate expression for the displacements,
and a much less accurate expression for the angles of rotation and for stresses.
However, as will be seen below, strain gauges are wound on so that they measure /93
the stresses which depend on the displacements, and not on the derivatives of
the displacements, so that the use of the Ritz-Timoshenko method is wvalid in
this case.

Let an elastic element, having the form of a torus-like shell, be compressed
by the force P between two plates, which we shall assume are absolutely rigid.
Figure 49 shows a diagram for the elastic element deformation. Due to the
symmetry, it is sufficient to examine the portion of the shell contained between
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two radial cross sections separated by
{ [ angle o. We shall take into-account
N both the radial displacements in the
e
!
! verse cross section, as well as the
¥
A
\
\
\
\\

(o]

9 direction of the radius p of the

‘ l middle line points of the torus trans--
p 1
! | H 'i;‘ displacement of the transverse cross

/ ' section of a solid disk in the direc--

/ tion r. We may use the following
P law for radial displacements v in

the direction of the radius p:
Q)

o

v = a,cos 29,

and the determination of the angle

¢ is clear from Figure 49. The dis-
placements caused by deformation of
the transverse cross section may be
expressed by the dependence

Figure 49. Computational Diagram of

a Toroidal Elastic Element. Uy = @, cos 2¢ COS @.

Let us determine the deforma-
tion €4 of a circular fiber having

the radius r, produced by the displacement u in the direction r
U =a,c0829 cos ¢ |- a,,

where a, is the displacement of the transverse cross section of a toroidal shell

as a solid body.

Just as is customarily done, making a geometric analysis on the basis of [94
the diagram shown in Figure 49, we obtain
_(r+va—ra % a; cos 2p cos g - a,
fa = reo r ro-+-pcose (1.230)

where T, is the radius of the axial line passing through the centers of gravity
of the toroidal shell transverse cross sections; p -- mean radius of the trans-
verse cross section,

In order to determine the relative deformation ¢ o caused by deflection of

the transverse cross section, we shall assume that the ring formed by two infinite-
ly close cross sections is a beam having small curvature. Therefore, we have

g, = %2, (1.231)
where k is the change in the curvature

L1 rdw .
“F(W*‘”)’ (1.232)
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whe.re z is the running coordinate, which changes over the thickness of the . toroidal
shell between - %; z ;1—1- (h —— shell thickness).
On the basis of formulas (I.230), (I.231) and (I.232) we obtain
| (I.233)

& = — g = 010529
p?
According to the Ritz-Temoshenko method, the coefficients a; and a, must be

determined from the condition of the total potential energy of the system being
The expression for the total potential energy has the following

at a minimum.
form
(1.234)

. E
= 2(1 =) S S (e7 + 2ve e, +ef)dw—2Pq,,
(w)

Integration is extended over the entire region occupied by the material
Substituting expressions (I1.230) and

from which the elastic element is made.
(1.233) in formula (I.234), we obtain

2(1-—v2)f

0

ml:-

* 2%
j‘j‘ a1c052<pcosq:+az) +
ro-pcosg
§_h
2

9a cos 2?]
(ro+

a% cos2pcosg + a, . cos2p 2

Gy 1°
o To-pcose p?
L pcose) (p + 2) dpdzde. — 2 Pa,.
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The conditions for the minumum of the quantity IT are as follows:

on —0;
601
ol = 0.
day
Thus, we obtain a system of two equations for determining the coefficients
a, and a
' 2 13 3 1
7
a [PS (l g +~16—zf’) +;713]—0298 (+p9) = I
_r(l—»® P
= rwE [ (1.235)
3
: (92+P“)—az(2+92+794)=0. I
: ]
where
= —p-' . —_ . L
P’ r ’ - 7‘ o ) = o .

“ ey

0
When the integrals were calculated, the following expansion was performed
87
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and the first five terms were taken into account, This provides a high accuracy
for a toroidal shell whose transverse cross sections have very great curvature.

Solving the system of equations (I.235) with respect to a; and a,, we ob-

tain
_2(1 =9

Efl:zp(l-{——p. —|——u,4+-§-i)

'J.
%=;@+;ﬂ%

CZI:

(I.236)

As would be expected, the quantity a, is 31gn1f1cant1y less than the quanti-
ty a;. If, for example, we set u = %3 we then obta1n a, ~ 0.05¢ aj. Making the

limiting tramsition r., - «, u -+ 0 and keeping the fact in mind that

0
P = q2=ry,

where q is the load per unit length, if we assume that the force P is uniformly
distributed over a circle having the radius Tys We obtain the approximate value

in the diameter change for a ring with a thickness equaling unity

A=, = 0,1427‘4‘/’%,
A

12
The exact solution has the following form [see formula (1.67)] /96
A= 0,149 9P
ER3
12

i.e., the error is approximately 57Z.

Customarily, strain gauges are glued on so that they measure the deformation
sa,,which has the following form on the basis of expressions (I.230) and (I.236)

2(1—vy) [cos 2¢ - cos¢ + 1 (p. «}-l p.a)]

£q =
5 2
m2Er /i (1 4 1 cos ¢) (1+§l*2+ TR 92)

The attempt is made to glue on the strain gauges in the zone of maximum
values of €4 for r = T, +p; $¢=0 and for r = Ty = 3 ¢ = m, In the first
case, we have

1 1
2a—mp+—»+~w]
& = 3 g2 (T.237)
DWU+MO+*M+—M+;§f

and in the second case we have
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1 1
2{1 —+v2 —1 _— —pn2
(e )[ tyrtge ] P (1.238)

5 3
m2Lrohp (1 — p) (] + ——P,z + —-U_A + ____>
2 p2
For rather small values of u =‘%— ﬁ—,-% and smaller) we may replace the ex—
0]
pressions obtained, with an accuracy which is sufficient for practice, by the
following expressions

g = 2= (l—p) )
1 3 ;
nZEr(,h;;.( _|_—71— !
1.239
6y = — 2<1—vz>a+u> l (1.239)
w2 Erghp (1 4 — ——
rolt; ( + l-‘-z)

Knowing the permissible value of {e], selected from the condition that the
signal has sufficient magnitude, on the basis of expressions (I.237) and (I.238),
or formulas (I.239), we may determine all the basic structural dimensions of
a toroidal elastic element.

6. Elastic Elements for Measuring Small Loads.

The fundamental difficulty encountered in measurements of small loads (on
the order of 0.5 - 50 kgf) is to obtain a high enough electric signal in the
primary device.

The elastic elements which are customarily employed, with strain gauges 197
which are glued on or wound on, are not suitable here, since the relative defor-
mations in this case are insignificant and the signal is consequently small. An
increase in the deformations in elastic elements either leads to flexible elastic
systems, which congequently have great nonlinearity, or the structural dimensions
are so small that it is impossible to mount them and difficult to use them.

In order to measure small loads, elastic elements with a special form are
used, having a special device for obtaining significant deformations (Ref. 27).

Let us examine an elastic element representing a rigid ring with a mem-—
brane (Figure 50). 1In order to increase the elasticity in the membrane, radial
grooves are used. On both sides of the elastic beams-strips, there are rigid
columns, on which pre-stressed strain gauges are glued, which are connected in
a circuit of the Wheatstone bridge type. The beams may have either a constant
or a variable cross section. Two of the most important cases encountered in
practice are given below: a beam having a constant cross section and a beam with
so-called elastic joints.

The essential feature of this type of elastic elements is found in the
fact that the strain gauge is a supporting structural element. Therefore, in
the cale¢ulations, it is impossible to disregard the influence of the strain
gauge on the operation of the elastic element, in contrast to the cases studied
in Sections 3 and 4 of this chapter.
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Figure 50. Elastic Element for Measuring Small Loads.

Under the influence of a load which is perpendicular to the plane formed
by the beams-strips, the rigid columns are rotated by a certain angle. It is
apparent that the deformation of a wire-wound resistor, and consequently the
magnitude of the electric signal, depends on the height of the columns. There-
fore, the height of the columns is selected in the designs so that the sensi-
tivity of the device lies within the requisite limits for operational use.

We may calculate an elastic element of this type by the method of forces,
assuming that the requisite value of the normal stress [o] is known when the
wires of the strain gauge are elongated; this value corresponds to the limiting
load of an elastic element and provides the given electric signal. It is
necessary to obtain expressions which interrelate the structural dimensions of
the -elastic element and the external load. When the number of beams-strips
is even, the circuit is symmetrical, and it is sufficient to examine the con-
current operation of two beams-strips lying along one diameter line. The load
belonging to this beam equals

2P
Q‘_‘ky

where P is the measureable force, and k is the number of beams-strips.

128

If k is odd, it is possible to supplement each beam with a second fictitious

beam-strip, in order to produce symmetry. The load in this case will also equal

= 2P
= k .

Let us examine the case when the beams have a constant cross section
(Figure 50). Let us distinguish between two beams which are interconnected with
a rigid section and which are built in along the edges. We shall assume that
the central ring is absolutely rigid. Figure5l1 shows computational and equiva-

lent diagrams corresponding to an elastic element with the assumed tolerance.
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Figure 51. Computational and Equivalent Diagram of a
Beam-Strip Having Constant Cross Section.

The system of canonical equations of the method of forces has the following
form

Bll’Yl + 812‘X2+A1Q = O;
821'1‘<1+822X2 + A2Q + 28 =1 O, }

where 8 is the column displacement at the point where the force X2
is applied in the direction of its action;

Gij and AiQ -— displacements due to unit and externmal loads, respectively
(1 —- index of the force factor whose unit equivalent pro-
duces the given displacement; j -- index of the force factor
in whose direction the given displacement is found);

X1 and X2 —— unknown force factors.

We employ the unknown force X2

to designate the wire pressure on a
rigid column, equaling the sum of
the projections of the forces Ppr’

which elongate the wire, on an axis
which is parallel to the beam longi-
tudinal axis.

In order to determine §, let us
investigate a wire frame made of k
columns and elongated by the forces
X2 (Figure 52).

. T
Figure 52. Force Diagram of a Strain According to Hooke's law, we

Gauge. have

Al = Xal

8-
EF sin—
sin 2



where F is the total area of the wire cross section:
The angle is

where n is the number of sets of wires in the columns.

It may be seen from Figure 52 that © /100
5 0l
2’
and, consequently,

S = Xat1
@ (1.240)
2EF sin —
k
Let us express the unknown force X2 by means of the given permissible stress
[0] which determines the requisite magnitude of the electric signal
Xy =[] F.
Expression (I.240) may be rewritten in the following form

a].

b=t (1.241)

2E sin—

k

The system of canonical equations assumes the following form
83X1 +3,,X, + Alg = 0;
3 Xy A8y + Agg + —1 (1.242)
Esin —:—

In order to solve the system (I.242), we must determine the values of the
coefficients Gij and AiQ' Multiplying by the values shown on the curves (Figure

53) according to the A. N. Vereshchagin law, we obtain

I —v2 2
Ajg= ———" , Q*
1Q £l 2 ?
[ —v2
A :—“‘ .gg. [51 2 .
S 2 e G
8y = 1_.'220 8=d, — 1
B T uT T T [er—2(R—¢)]e,

o 1 —v2

Oy = £, [e,—2 (R — o)l ez,

The width of the beam-strip is considerably greater than the thickness h.
Consequently, we may assume with a fair degree of accuracy that plane deforma-
tion occurs. Therefore, in the formulas given above for displacements due to
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EJ

unit loads the quantity 5 is assumed as rigidity in the case of deflection,
1-v

where Jl is the moment of inertia at the beam-strip.

Substituting the expressions obtained §,, and A,. in equation (I.242), we
obtain 13 Q- '

P e —2(R—o)]eX,— L =2 .2

1 —2
2¢X -
1+ Jy El, 2

1
EJy E

1

f,:z [6—2(R—c)leX; + 1;711 [6,—2(R—o)le’X,— (1.242')/101

E
Qe _51_)2] [la  _g
Ely 2[0‘ (R 2 —I—Esin_’r_ '
k

We obtain the following from
the first equation of the system
(1.242)

X, =% e, —2(R—0)]X,

£J,
£J00 e 4 2

: '3
P — since
< 2R . N

ired?
‘XZ = [G] F = [c] %4._. R (1.243)

WMMM W we then have
TR e

Yo Z£J=00 2 Xyt X, = Qe enmd?[c} fe, —2(R--0)l. (I.244)
o~ ] s 80

c- _é@ Excluding the unknown X1 from

] the second equation of the system
1“1‘ g (I.242'), by means of formula

”H{Hl“[ HIHIHl (I.244), and employing expression
Xp=1 X (I.243), we obtain the dependence

' l £J=c0 between the fundamental geometric
e ‘_:;_;:___a——-:_,:;;4;;;:§§ dimensions of an elastic element
« c — c 2 and the load. This dependence /102
|
o ‘eﬁ%$“!‘l elastic element which provides the
o given stress [o] in a strain gauge
Figure 53. Curves of the Bending Moments. for a maximum load, and consequent-

ly the electric signal of the re-
quisite magnitude.

| ™=

¢

!
4

Y
L

IUI‘ ¥ makes it possible to construct an

Customarily, the given relationship is used to determine the thickness of
the elastic element h, and the remaining dimensions are provided based on struc-
tural considerations. The expression for Jl will have the following form

1 — 2 "y — 2 _— T . kol — ennd?le .2_@_— 2
i ‘( )e—[q (R— o)} sm- ki[Q(R 2 ) enwd? | ]( 5 )]
ey [o] )
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3
Since Jl = %%— for a rectangular cross section, we then have

3 2 _ _ N “;_ _CL\___ s 2R—a1 1 ‘
L _n//3(1 —vDeleg—2(R 7c)] sin P [Q(R 2} enwd [G](——_% )] (1.245).
V “acy [o]

It is frequently assumed that k = 4,
i.e., the elastic element is given in
the form of two mutually perpendicular

S — T Tt beams
i M ety M
L. c—- A1 |

. R T L Let us give a numerical example.
IIH [ ' For an elastic element having k = 4,
. a=1lcm,e=1cm, R=2,7 cm, ¢y =

;%7
z =2.7cm, ¢c =2.25 em, Q = 1 kgf,
n=4, d=0.,002 cm, [0] = 2000 kgf/cm?,
Figure 54. Diagram of Bending v = 0.3, we may determine the quantity h.
Moments Due to Unit Force. According to the formula (I.245), the

thickness of the elastic beam-strip
equals h = 0.094 cm.

In conclusion, let us calculate the maximum values of the deflection and
stress. For this purpose, we shall compile the curve of the moments due to
the unit force (Figure 54), and multiplying the curve of the moments due to
qQ, Xl and X2 by it, we obtain the deflection at the point at which the unit

force is applied

o= T 2rg1(. . a
v SET, [ 5 -+ eand [o](2 R)(C—E-—— )]

For the numerical example under consideration, the deflection is

Yiax 3:32 : ]Ow3 CcHM.

We may readily calculate the stress. The maximum bending moment due to
the force Q equals

A/Imn\ e _36: ,
and the total bending moment may be determined by the formula /103

e {0 omerafaz )
The stresses caused by the deflection are

=~M- ~-_i_ NPT o — 2R
e [Qc enid [c](- ég__f)]'
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For our example, o = 393 kgf/cmz.

Frequently, elastic beams-strips have a variable cross section. Without
discussing the general case, let us investigate an elastic element which is
most frequently used in practice. It represents a rigid ring which supports a
beam with elastic joints. We shall set a number of such beams equal to k; just
as previously (Figure 55).

19

: -

Figure 55. Elastic Element with Elastic Joints
for Measuring Small Loads.

—

& n|// d%ﬁ/////

In the calculation, we assume that only elastic joints having the thickness
h are deflected, and sections having the thickness t are absolutely rigid. We

may show that, for the ratios of %-corresponding to the actual construction of

elastic elements, this assumption -- which greatly simplifies the calculation ——
leads to insignificant errors.

Figure 56 presents computational and equivalent diagrams. The system of
canonical equations has the same form as previously [see formula (I.242)].

Multiplying by the values shown on the curves according to the A. N. Veresh-
chagin law, we obtained the values of the coefficients sij and AiQ:

Me=— ' TP QbR =), dag=—-'—" L2 2R _p_2p;

| —

~ l — ,"
Qg4 == 46, | P—
1 A . A g
Just as in the preceding case, it is assumed that plane deformation occurs
here. After substituting the coefficients obtained 6, 3° A, iQ and § [just as pre-

viously, the latter is determined by expression (I. 241)] in the system (I.242),/104

we obtain



| — 4
T AbX, 2 2beX, — L Qh(R—r) = 0;

Jy 1
I—Yz 1—2 1__z b
+ 20e2X, ——.___L_Qe —h_
%t E, 2 R (1.242")
—on+ e o,
Esm—E-
B
The first equation of system
é%? %——T**"——z (1.242") yields the following
1] )
g : LT A X1=%(R—r)»———;¥Xz.
q
—2R A Employing expression (I.243),
%i- 2 X, we obtain
g I e — _2Q
q
We obtain the following from

the second equation of system

Figure 56. Computational and Equiva- (1.242"), just as previously:

lent Diagrams of a Beam-Strip with
Elastic Joints.

[o]] sin l—

(11— be[Q (R—b—r)—
3 (I.246)

J, = —- -
1 26, [o]

,as/s(l_-ﬂ) be [Q(R—b——r)—— enrd? [a]] sin —
b A DA 2 ki
z - - .
a-¢ [a]
Let us assume that it is necessary to

Let us give a numerical example.
design an elastic element with the following data: k = 4, e=1cm, a=1 cm,
b =0.3 cm, ey = 4,25 cmy R =2.7 cmy * = 0.6 cm, v = 0.3, d = 0.002 cm, n =
= 4, [o] = 2000 kgf/cmz, Q=

The thickness of the connecting piece, which is determined by formula

1 kgt.

(1.246), is h = 0.061 cm.
Similarly to the above, the expressions for deflection in the middle of /106
the total bending moment and the stress due to deflection assume the following

form (Figures 57 and 58):
. b= T3 po_ . 21 3 —
== mEhuJ?Q(3b +3or—RE—2R 11 +—2bR)

— (R —r+ —323) enwd? [o]];
M [Q (R—r)— emtd c]];

[Q(R~— n—2L 1]

211112
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’/Ra-r) ’m-r) 5‘

|

=1
1-u?

Nb—

o gy bt
|

g//f-b-r) ?£(/i’-r) ar
2 X,=t Figure 58. Diagram of Bending Moments /105
|| | _Eii> Due to Unit Force.

”‘ H',HI ] _ Substituting the numerical values,
we obtain

}— X?=7 X; =
T | | 0=775-10"2cu
A ] _

= —% g = 827 kgf/cm2

3

e FH 7. Beam and Frame Elastic

.
11
11

- Elements
Figure 57. Diagrams of the Bending Beam and frame constructions have
Moments. been widely employed in force measuring

technology, due to their simplicity of
construction and high metrological
qualities. The limiting values of the
loads which they can measure range between 20 - 500 kgf. The stresses, which
are proportional to the load acting in a transverse direction and producing de-
flection, may be customarily measured by strain gauges which are glued on to
the elastic elements.

The construction and form of beam or frame elastic elements may be very

different, due to the necessity of arranging them efficiently, operational con-
ditions, etc.

A cantilever is the simplest beam elastic element. For a beam having a
constant cross section the stresses where the strain gauge is glued on may be
determined by the formula

— 61) (l'f' l(?)
bhe
where 1. is the coordinate of the location where the strain gauge is glued
on, determined from the seal;

1 —--beam length;
b and h --width and height, respectively, of the beam transverse cross section.

Frequently, cantilevers of equal resistance are employed to increase the /107
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signal and in order that its magni-
tude does not depend on the inaccur-
ate arrangement of the strain gauge.
In this case, the stresses are deter-
mined by the formula

|
|

|
bty ety —
Jan)
\
y

6P

ey G =i
boh?

I,

where b0 is the beam width at the

location of the seal.

1
LNES

Figure 59. Elastic Element in the
Form of a Plane Frame. Another type of elastic element

which deflects is a plane frame (1)

(Figure 59). It consists of elastic
beams 1 and 2 having identical length, which are connected at the ends by the
rigid sections 3 and 4. The rigid section 3 at the same time secures the de-
vice, and section 4 has a rigid projection 5 which receives the measureable

force P.

The elastic beam 1 is made in the form of a thin plate and serves as a
guide beam. Thus, the basic portion of the measureable load P is received by
the elastic beam 2, on which strain gauges 6 are glued on close to the cross
sections with the largest bending moments. Due to the presence of the guide
plate 1, a constant right angle is maintained between the axial line of the
rigid section 5 and the direction of the force P acting upon the element dur-
ing deformation. The longitudinal forces and moments, which arise during the
measurement of P, uniformly compress and elongate the elastic beams 1 and 2,
which does not disturb the equilibrium in the electric bridge circuit.

Let us employ Pl and P2 to designate the forces received by elastic beams.
We then have
Py +P,=P. (1.247)

The displacements of the beam ends may be determined by the following
expressions

D 1 Y
Y ey, T OTrT 1284, (I.248)
bh3 bh3
where Jl = —— and J2 = 75 are the moments of inertia for the cross sections /108
12 L=

of beams 1 and 2.

Satisfying the condition of compatibility for the beam displacements,

(1)Kraftmesseinrichtung (Force measuring device). Patent FRG, No. 1052708,
Class 42k 7/05, February 2, 1961.

98



which hawe the form Vi = Vg, We obtain

/z? E (1.249)

P, = P ; (1.250)

14—

Kt

P
P, = .

2 3 (1.251)

14 w3

2

Expressions (I.250) and (I.251) show that in the case h, + 0 the quantities

1
P, >0 and P, > P. Thus, the smaller is the height of the beam cross section

h]’ the less the force Py, differs in terns of magnitude from the force P. For
h

the ratio ﬁl ='%, only about 8% of the force is received by the elastic beam 1.
2

In designing for strength, the fact must be kept in mind that the maximum
stresses will be as follows in the beam 2
3Pyl

Smax = . I1.252
= (1.252)

Let us compare the element under consideration with an elastic element in
the form of a cantilever. Naturally, they must be compared under the condition
that they have identical external dimensions (in this case, equal length) and
equal maximum stresses providing for an identical electric signal. For a canti-
lever, the maximum stress is determined by the formula

S = 2L I.253
max b/li ’ ( . )
and the maximum deflection is determined by the following expression
P
vmnx::EEGZ’ (1.254)
where
I bh3 )

2
The corresponding values for the frame system may be determined by the
formulas (T.248) and (I.252). We have the following from the equation for the
expressions (I.252) and (I.253) /109

i
Taking this relationship into account, we find the following from formulas
(1.248) and (I.254)
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i.e., a frame elastic element is approximately 40% more rigid than a cantilever.,

A subsequent variety of beam elastic elements is a three-dimensional frame.
Elastic elements of this type are used, for example, in certain modern types of
batchers which are used for the continuous weighing of friable materials (Ref. 5).

As may be seen from Figure 60, the working section of this elastic element,
upon which the tensometric transducers are glued, 1is made in the form of three
beams having a variable cross section, connected with a rigid center. The beams
must be close to the beams having equal resistance, so that inaccurate installa-
tion of the strain gauge does not influence the magnitude of the electric signal
entering the secondary apparatus.

These beams are supported by three
columns which are much less rigid when
deflected than the working beams, and
in essence represent elastic supporting
joints.

Thus, this type of elastic element
represents a statically indeterminant
three-dimensional frame having a varia-
ble cross section.

If the condition of symmetry is
employed, the computational diagram of
the elastic element may be represented
Figure 60. Elastic Element in the in the form of a frame (Figure 61)
Form of a Three-Dimensional Frame.

loaded by the force P1 = %u Statically

separating the indeterminant system

and replacing the effect of the removed
sections by the unknown moment X and the force Q, we arrive at the equivalent
system.

By studying the principle underlying the action of the elastic element, we
may see that the force Q and the moment X must be such that the horizontal dis-
placement of the point b of the vertical stand equals zero. This condition is /110
due to the strict vertical displacement of the point c of the elastic element
during the loading process.

The second condition stipulates that the angles of rotation for both beams
at the point b be equal in magnitude, and have opposite signs.

The equation for an elastic line of a horizontal beam is as follows:
EJy(9)v] = — P (I, — x) + X. (1.255)

The equation for the elastic line of a wvertical stand is
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Figure 61. Computational and Equiva-
lent Diagram.

In both cases, the determination
is made from the clamped end.

Eloy = —Q(l—x) + X.

Figure 62. Horizontal Beam Having
e o Variable Cross Section.
a a

(I.256)

The conditions formulated above for the operation of an elastic element
of this type (condition of deformation compatibility) may be written as

follows
vy (l) = —uy(L);
Ua(lp) = 0. }

Figure 62 shows a horizontal beam having a variable cross section, which
customarily has a constant thickness h and a width which changes linearly.

(1.257)

It

may be readily determined that the width of the beam b changes according to the

following law

x

B

b = [70.__”_0_””1
L
and the moment of inertia changes according to the law

h3 by— b
J =2 [p 20”9
1(X) 12 ( o I JC).
Let us represent Jl(x) in the form

J, {x) =Ax + B,
where
A= "Bo—=b) | B — bd?

124 ’ 12 -
Integrating equation (I.255) twice, we obtain

o= T (2= X ) s
. Plxz P,B X—Plll Ax - B
0, — _ — Pily\
Y o4AE (ms AE ) A [ln (A% +

+ B)— 1]+ Cyx 4-C,

(1.258)

(1.259)

/111
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Employing the following boundary conditions: in the case of x = 0 the dis-

placements v'1 =v; = 0 -- we find the integration constants C1 and C2:
ma [ P8
=0 (X Plll);
B v [ PiB I.260
Com 2 (nB—1) (B2 — x4 P,). (1.260)

Integrating equation (I.256), we obtain (J2 = const.):

P Qe X—Qh

U, :
2EJ, EJ, (1.261)
Qx3 X—Q . )

Uy, = —_— X",
6EJ, 2EJ,

In order to satisfy the first condition (I.257), we equate (with the oppo-
site sign) expressions (I.258) and (I.261), respectively, in the case x = Zl

and x = 1
2
_ P.B
Bh a4 By (DR — AP+ D2 (S X ) =
_____95‘__J£:iﬂzl
T 2EJ, El, ¥

from which we have

i/ B AlL B QA%

)In —'——B B ,,—— ll] -+ 2!’2__

AL+B  A-b : (I.262)
B Ja

The fact that the second condition (I.257) is satisfied makes it possible
to express Q in terms of X:

ng X—Ql, ;2
6is, 2F], =0,
from which we have
=3X
Q= 5 (I.263)
Substitution of the expression (I.263) in formula (I.262) yields [112
B Al -+ B
Py [(—; - ll) In 1“3— —_ 11]
AhB 1k : (1.264)
B 44,

Let us introduce additional conditions. The first condition - equal
stresses at the points b and ¢ - may be written in the following form

MO _ MO (I.265)
W (0) W (1)

where M(0), W(0), M(ll), W(ll) are the bending moments and resistance moments,
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respectively, at the points with the coordinates 0 and ll"

Expanding equation (I.265), we obtain

—Ph4+-X X
by - _“_b:—' (1.266)

Since the strain gauges are glued on close to the seal, the second condi-
tion - obtaining a maximum electric signal - may be formulated as follows

[o] = — S[—=Pih+X] ,
boht
or, in other words,
6X
[51 = b 'y
from which we have
X==5!%£i. (1.267)

Equating the right hand sides of equations (I.264) and (I.267), we obtain
the dependence of the geometric dimensions on the load Plz

m

bhtle) _P111 (m’—: [ lnm— 1)

6 L%y (m—1) ° (1.268)
Inm—-—"- £
481,J,
where
m = ,b_l_
by

Formulas (I.268) and (I.266) make it possible to determine one of the
parameters of the elastic element under consideration, if the remaining para-
meters are given (as a rule, these parameters are specified from structural
considerations). Most frequently, the thickness h of a beam having variable
width, on which the strailn gauges are located, is the decisive parameter.

By way of a numerical example, we shall determine the thickness of an /113
elastic element with the following data: Pl = _5_:(;_ kgfs bl = 0.8 cm; b0 = 2cm;

1, = 2.5 cm; J = 0.8:10 %em®; [0] = 2000 kgf/cm?.

Condition (I.266) yields

=X mtl _ bplo] mgl _
VP m 6P, . = 56h2

We obtajin the following from (I.268)

h = 0,279 cn.
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In a similar way, we may determine the paramaters 22 and Jz, for example.
It is sometimes necessary to limit ourselves to the deflection of the elastic
element where the external load is applied. We must then add a limitation on
the deflection at the given point to the existing conditions, employing ex-
pressions (I.259) and (I.260).

In principle, this is calculated in the same way, although the numerical
computations are somewhat complicated.

CHAPTER II /114
THEORETICAL DETERMINATION OF ELASTIC ELEMENT NONLINEARITY

1. Elements of the Chebyshev Approximation of Functions

We shall present certain information derived from the theory of the best
approximation of functions by means of the polynomials developed by P. L. Chebyshev.
The article (Ref.l.) has discussed the Chebyshev method in a form which is suit-
able for engineering applications.

Let us assume that we have a system of functions ¢1(x), ¢2(x), ---,¢n+1(x).

We shall assume that these functions are linearly independent, and continuously
differentiable in the interval in which the independent variable changes

‘xl < X < Xn4-1.
Let us compile the following polynomial from the given functions
P (x) = p1o; (%) + pyo, (%) .. .+ D@, (X).
If this polynomial has no more than n roots in the (xl; xh&ﬂ? interval,
this means that the functions ¢l(x), DY CIRARER ¢n+l(x) form a Chebyshev system.

Let us formulate the following problem of the best approximation: How may we
determine the coefficients P+ Pye **° Pyqs SO that the polynomial P (x) de-

viates to the least extent from the given function f(x) in the interval (a,b¥?
The coefficients Pqys Pyecee Pyq may be selected so that the greatest diffe-

rence m of the functions f(x) and P(x) in the interval (xl, xn+l) is minimal,
i.e., m = min max |f x) -P (x)l
P
X KX Xt

This problem may be solved by the following fundamental Chebyshev theorem.
In order that the following polynomial

P (x) = M9 (x) —i_ P9y (\:) _!— L _l_ Pu%n (,\’)
of the system of Chebyshev functions deviate the least from the given continuous

function £(x) in the interval (a,b), it is necessary and sufficient that the
difference
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F(x) = [ (x) — P (x)

reaches its limiting values +m no less than n + 1 times with successively /115
alternating signs in the interval (a,b).

On the basis of this theorem, we may write a system of functions, from
which we may determine the coefficients, Pis PoseessPs the magnitude of m, and the

POintSXZ’ Xgyeee,X , at which the function F(x) reaches its maximal values, which

are equal to #m. As may be seen, the total number of unknowns is 2n. 1In order
to determine the unknowns, in the first place we have n - 1 equations corresponding
to the extremal points which lie within the interval (a,b)

Frx)=0 (i=23,...,n), (11.1)

In the second place, we have ntl equations expressing the condition of
equality and the alternation of the sign of the largest values of F(x) within

and at the boundaries of the interval (xl, xn+1)

Frig)==+m (=123, ..,n+1). (11.2)

Thus, the number of equations corresponds to the number of unknowns. The
values of the coefficients Pys Pgs®"®s Ps obtained on the basis of equations

(II.1 and II.2), determine the polynomial P (x) for which the greatest deviation
of tm from the given function f(x) is minimal. This means that, as compared
with any other polynomial compiled from the same functions ¢1(x), ¢2(x),"- ¢n(x),

which approximate the function f(x) (for example, a polynomial obtained by the
method of least squares), the polynomial which we have obtained gives the best
approximation.

Very frequently all the functions ¢1(x), ¢2(x),---, ¢n(x), from which the

approximating polynomial is compiled, vanish in the case x = Xys and x = x 10
o

or simultaneously in the case x = x, and X = x It is apparent that the

1 ntl’
polynomial P (x), which represents their linear combination, also vanishes for
the same values of x. TFor example, in this study the approximating function
is chosen everywhere so that it vanishes at the origin, together with the
approximabile function. However, in this case the Chebyshev theorem remains

in force. It is only necessary that the roots x = % and x = X1 be taken

into account when calculating the roots.

2, Nonlinearity Coefficient of Elastic Elements

Chapter I studied elastic tensometric elements in the linear formulation.
This led to a linear characteristic of the load for the coordinates P, o.

Calculations for strength and rigidity with this formulation yield satis-
factory results, since in this case great accuracy is not required. Such a
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formulation is inadequate when studying the metrological properties of an elas-
tic element, since the load characteristic of an elastic element is nonlinear.

The nonlinearity of the characteristic is due to imperfect elastic pro- /116
perties of the material from which the elastic element is prepared, a change
in the geometric dimensions under a load, thermal interaction, and other causes,
When an accuracy which does not exceed a fraction of a percent is required from
the elastic elements, the linear formulation of the problem is not satisfactory,
since the measurement errors which result from the nonlinear characteristic of
the elastic element may exceed the limits of accuracy.

We shall study the nonlinearity produced only by a change in the form of
the elastic element and by a displacement of the point where the force is applied
during loading, since this is the basic reason for the nonlinear characteristic,
and also because it is very difficult to take other factors into account by an
analytical method.

Thus, when determining the nonlinearity, we reject the principle of unchanged

form in the loading process as well as the principle of the independence of the
action of the forces, i.e., we do not adhere to the assumptions advanced in the

strength of materials, However, we assume that the elastic element material
is homogeneous, isotropic, and satisfies Hooke's Law. We shall not take into
account the influence of displacement, since the nonlinearity, which arises
when this factor is taken into account, is of a higher order of smallness.

The error arising due to this type of nonlinearity is a systematic error
of the device, and can be determined numerically. "The nonlinearity may be

determined by different methods.

Most frequently, the nonlinearity of a function (the analytical depen-
dence of stress on the load will serve as such a function for us) is determined
by the first nonlinear term of the expansion in series. 1In this case, such an
approach is not applicable for the following considerations. In a force mea-
suring device, the scale of the secondary apparatus is linear, and every attempt
is made to keep the greatest error at a minimum by adjustment. In essence, this
means that the curve for the dependence of the device readings aen the magnitude
of the load is best approximated by a straight line passing through the origin.

On this basis, as the nonlinearity we shall employ the largest relative
error in the case of the best approximation, which will be called the non-
linearity coefficient m from this point on. Consequently, if the dependence
between the load and any other quantity which is proportional to the readings

of the device -- for example, the stress in the elastic element at the place
where the strain gauge is glued on -- has the following form
o= f(P),
and if the linear dependence, representing the equation of the device scale, is
= ¢P,
I (I1.3)
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/117

where the constant coefficient ¢ is un:
known, then the nonlinearity coefficient

6 4 Lt m and the coefficient of proportionality
c will be determined from the following
conditions

R f(P) —cP
nz_-nynlnaxl —a;~——' (I1.4)
' s L
APy ln P in the interval
Figure 63. Approximation of the Load AP, <P <P,

istic b Linear F tion. .
Characteris y a Line unction where APm is the smallest value of the

load, beginning with which measurements
are permissible; Pm —— limiting value of the load.

This condition denotes the Chebyshev approximation, although our problem
has the following characteristic: we do not employ the absolute values of the
divergence of the functions, but rather the relative values.

The meaning of the condition (II.4) may be most simply explained graphically
(Figure 63). Let the curve L passing through the origin represent the line of
the load. We shall draw two lines OA and OB through the origin, so that each
of them has not more than one point in common with the curve L, in addition to
the initial point. This point may be either a point at one of the ends of the
interval(APm, Pm,)or a point of contact within the interval. The bisectrix

OC of the angle AOB formed by this method will be the desired linear dependence
satisfying condition (II.4).

Considerable mathematical difficulties are entailed in determining the
deformation and stress of elastic bodies, with allowance for a change in the
geometric dimensions under a load. This is due to the fact that the equations
thus obtained are usually nonlinear, and in the general case it is impossible
to find their integral in closed form.

As has already been pointed out, many researchers have been interested in
designing elastic parts. Particular attention should be called to the work
of Professor Ye. P. Popov, who systematized the behavior of a large class of
elastic flexible systems, with allowance for a change in the geometry under a
load., However, the method which he advanced is not suitable for analyzing force
measuring elastic elements, since this method does not make it possible to sepa-
rate the nonlinear part of the solution from the 1linear part in general form.
This method is also unsuitable due to the lack of tables of elliptical integrals
with a small step.

Interpolation in terms of existing tables may lead to rough errors in pro-
blems requiring high accuracy of the solution. Therefore, when the problems
presented in this chapter are solved, we primarily employ the method of the /118
small parameter which is very efficient and suitable for an analysis of elastic
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elements.

We should also note that it is insufficient to clarify the-nature and magni-
tude of the errors when designing elastic tensometric elements. A method must
also be found, if this is possible, for removing these errors.

3. Elastic Elongation and Compression Elements

Let us determine the nonlinearity of an elastic element, an arrangement of
which is shown in Figure 64, The calculation of the parts comprising this ele-
ment was performed above. Details of the construction in Figure 64 are not
given, and the element is assumed to have the form of a beam with a constant
cross section, since this will not introduce any changes in the subsequent dis-
cussion.

In order to determine the electric
signal from a strain gauge, it is nec-
essary to know the stress at the place
where it is glued on. In this case, it
is sufficient to employ the following

V4 V&,
[ well known formula
AL, 6=-L_,
N\ N FO
W
S] >
N where Fo is the area of the transverse
: cross section of the nondeformed rod.
T a
This formula is very accurate, since

. the magni im
Figure 64. Tensometric Column, and Two > mag }tude of the.max1 um stresses
arising in the elastic element does not

Forms of its Cross Section. usually exceed 0.3 - 0.5 of the yield

point, and consequently we may disregard
the difference between the beginning and final values of the transverse cross
section area.

A different situation arises during the theoretical investigation of the
metrological properties of these elastic elements. The requirements imposed
on a force measuring device are so great that we must reject the principle /119
of the deformation smallness even for very small stresses.

Systems of this type may be regarded as nonlinear only in force measuring
devices. Elastic elements representing columns which elongate or compress have
a circular or rectangular cross section. These two types of elastic elements
are calculated below in the nonlinear formulation.

Beam having a square cross section (See Figure 64, I). In order to be spe-
cifiec, we shall investigate the case of elongation. The z axis is directed along
the beam. In the case of the uniaxial stress state, the generalized Hooke's Law

may be written in the following form e — 2.
Z

~F

vg
€ ==&y = — z:_)\sz'

<
tn
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where v is the Poisson coefficient.

The true stress equals

g, =

z ’

o

Fz is the transverse cross section area in the deformed state.

Since we have

FZ= a2(1—~:sz)2za2 (1—"2”%):
then

cz-az(l——ch—_z) = P.
E
Setting-%Z = 0gs We obtain the expression for determining o,

E E
2 —— —_— g, = O,
%z 2v Gz- + 2v 0

from which we have

E E? E
== 4 LB (IL.5)
% 4y ‘/16\«2 2v %o

Selecting the minus sign in front of the root in formula (II,.5) and de-
composing the expression in the form of a Newton binomial, we obtain

_i . > [ G \2
cz—4y{l [1 2_1900_8(‘E°)~—...]}.

Due to the smallness of the second component of the binomial we may confine
ourselves to three expansion terms

2v 1 2v
°z=°o+?0(2): a;P_*—h(;’.E—P{ (11.6)

Formula (II.6) makes it possible to take into account the nonlinearity of /120
an elastic element having a square cross section. In order to determine the
nonlinearity, let us examine the curve for the load, shown in Figure 65. We
may approximate the curve for the load o, by the line o = c¢P, so that condition

(IT.4) is satisfied. The meaning of this condition was clarified above.

We may represent the relative error n(P) in the following form

(_L_c)P+ ?;j:-(—l-—l)-{— % p.

n(p)=m=“_’2 @

G cP a%c a’cE
According to the linearization condition (II.4), we may write the system of
the two following equations: L S D . WP, = —m;
a%c a‘cE
1 v
— 1 —_— P =m,
azc + atcE ™
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Solving this system, we obtain

1 v
c—zz——}—alE(l—]—k)Pm; m =
Py
v p (17—)\)
T E v e
1+aTEP”’(1+)‘)
Disregarding the second term in
the denominator of the expression for m,
we may write
m=—(1—No,  (II.7)
where
P
6 GOm:4a;n'
Thus, the nonlinearity depends
H only on the conditional maximal stress
! Cpn e
H Om
Al G P By defining the permissible (nor-
Fieure 65 Curve for the Loadin mative) value of the nonlinearity coef-
& : . . g ficient [m], we may determine the limiting
of a Tensometric Column During
. stress o, ¢
Elongation. Om
E
Oy == [M] ———
Um [ ]V(l_—.)\)
and, consequently, the limiting load Pm:
E
P =[m]— -,
m =[] va? (1 —2)

Let us give a numerical example. Let us set A = 0.1, o9 = 2000 kgf/cmz,

v = 0.3, The nonlinearity coefficient is m * 0.027%.

It is well known that the permissible error equals 0.05% for a wide class /121
of scales. A comparison of the nonlinearity coefficient, obtained in this ex-
ample, with the permissible error of the scales indicates that this type of
elastic element is sometimes unsuitable for use in very accurate scales, due to
the fact that an error caused by other factors, which are not taken into account
in the calculation, is superimposed on the error caused by the nonlinearity.

Beam having a circular cross section (See Figure 64, II). Just as in the
preceding case, in order to be specific we shall examine the elongation of a
beam.

In the case of a uniaxial stress state, we have

02208—":0.
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The generalized Hooke's Law has the following form

v . A
gy =——0, g =—_—-qa

g, = E r E ®

1 .
2= F %
where €5 €g» €., are the relative deformations in the corresponding directioms..

Taking into account the symmetry of the deformation with respect to the
longitudinal axis of the beam, we may write the relative deformation in the dir-
ection r as follows

e _ rt+m)AB—rAD)  u

r = —.

rAQ r

The real stress is

z ’

p
g, = ——=
Fy

where Fz is the area of the beam transverse cross section in the deformed state

F,==w(r4+u?==r2(l +¢) (I1.8)

0 ==%;2, and dis-

regarding the square of the small quantities in the expression (II.8), we ob-
tain an equation which is similar to expression (II.6)

Taking the fact into account that er ==_.2_cz, setting o

2v
OZ:GO+ —E—Ug.

Therefore, just as in the case of a beam with a square cross section
[See Formulas (I1.7)], we obtain

~
o= —(1—»1)0,,,
E ( ) om

where

1
N
n T:I'Z

4., Elastic Elements of the Cantilever Type /122

Elastic elements representing a cantilever loaded by a force at the end
are frequently employed for measuring small and medium (up to 500 kgf) loads.
The customary assumptions advanced when solving this problem state that an
approximate expression for the curvature is employed

1 d
p dxs’
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and also the displacement of the point of application of the force is not taken
into account.

In order to take the nonlinearity
into account, we must compile a precise

Y dv E; equation for the beam elastic line. Let
dx us study a beam having a constant cross
I ,_jIP section.
Ly
N > yey__x We shall assume that the external
Ny =TT .
m\:l\“ s load does not elongate the elastic ele-
8 ment fibers along the neutral line. The
A—— X equation of the elastic line may then be
- Xg written in the following form
Figure 66. Diagram of an Elastic Ele- d%
the Cantilever e. 2
ment of Typ dx = 11;1/ (I1.9)
The values of the quantities con- [1_,_(%)2]2‘
X

tained in the equation obtained may be
seen from Figure 66.

It is sometimes advantageous to
change from the argument z in expression (II.9) to the length of the arc s.
For this purpose, let us investigate the differential of the arc of the beam

neutral line.

The curvature may be written in the following form

1 _ e
e ds
1t may be readily seen that /123
do .
— =sing,
ds ?
from which we have
. do
© = arc sin—
and ds
d%
ds?
do . 4 (arc sin —dﬂ) -
ds ds ds ) do \2
“(a)
Thus, the equation for the elastic line acquires the following form
2
ds? M
do\e  EJ
(%)
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With allowance for the displacement of the force point of application, the
moment will have the following value

M = — P(x, — Xx). (11.10)

Let us determine the quantity xp, — x* The differential of this quantity

dscoso = ds]/ 1— (?)2.
S

Performing integration from s to £, we obtain

equals

(I1.11)

The final form of the equation for the elastic line is as follows:

(I1.12)

L
2

{
d? 7
w1 ()] T =R e

%)j_ 1/2 and [1 -G—Z—)z] 1/2 in the form of the Newton

binomial, and let us perform substitution in the initial equation (II.12):

Let us expand[l -(

{ ,
” 1 "ne 3 Y4 _____P_, _i 2 —
LR Y ORI CORNN E’s[l 5 (@) (11.12%)
»1—%(0')4——— . .]ds.

The solution of equation (III.12') may be written in the form of a series [124
U= puy + pPoy + pu, +-. .,

where u = %J.

Substituting this series in equation (II.12') we obtain

» » g 1 . , ,

(P‘Uo‘l"P-zUl +}14L2+. . )[1 + ?(P'UO +P?Ul +P302 +. _.)2 !
3 4 |

+ = M wn’ 3.4’ ’ .
g 100+ uio] +p2-0] +--.)‘] =xtf[1—;(pvo+92w +

o 1, ., , ,
+P‘”z+--->2~;(vvo+p2vl+93v2+...)4]ds.
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We shall confine ourselves to terms with u in the fourth power

”» 9, 4 ”» l ” ’ l ’ »
#0g + p%0] - p%0; + pfof + 5 1905 (v)* + - b (gl o1+
] L4 ]
+ploy - v) - vg = pjds —5 p:’y (vy)?ds — p* J‘vév_[; -ds.
5 s

Equating the terms for identical powers of u, we obtain

vy =1—s;

v, =0;

!
v + vo (v =— % S( o) ds;
1

vy o, -0 Sv M ds.,

Since vy = 0, we obtain vy = 0 from the fourth equation.

Solving the first equation (II.13) with respect to vos and then the third

equation with respect to Vs We find the desired solution.

Integrating the first equation, we obtain

(I1.13)

Is ——2 +C
s?
b = ‘2—‘_ ry + Cs+D.
For the existing boundary conditions s = 0, Vo = 0, v(') = 0, the solution
assumes the following form
S s?
o P c > Y Is — =

Setting —?- = £, we obtain

vy = %3(1_—;&), 0 = zza(1~é-a).

Let us rewrite the third equation (II.13) with allowance for the value

found for vo

H
v;=—%(z—s)(zz-s2~zss+%’)_lj(zz—1s+%z)ds

2
s
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Let us replace the integral and perform some simplifications

v, :—_——% (l”sz——g-lzss-}—%ls‘——%ss +li5ls).

Performing integration and taking into account the zero boundary conditioms,
we obtain
r bogsfy g B2 B Ei_is_‘)-
02“1531(+2zz 813+4L4 8 is)
I 5 5 % 7 s® 3 s 3 sb
=——8 (1l + - — = ———-———).
Ys 30 ° T T i s T e T s s

Just as previously, let us set & = % We then have

f Lol y B B g 3
oy =— g b1+ S8 T8+ 86)

! 5 7.y 3 3
0= — g 81+ T8 — LB+ BB,

Thus, we obtain the solution of the initial equation (II.12)

S Y S N AV e S5p_ Ty
¢ 2EJE’ (1 3£) (EJ)330E2(1+4?° 4‘?’;+ (11.14)

3 3
+5E 5 B

In the case s = 7 (§ = 1), the deflection comprises

Pu3 4pa? (I1.15)

Ug P
3B 105 (EJ)®

In formula (II.15), the first term is the known linear expression,
and the second term represents a small nonlinear deviation from it.

Let us divide the left and right side of the formula obtained (II.15) by Z.
Setting
Yo P2

3EJ

we obtain /126
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é: Yo
Setting 7 = N> 77 = Ng» We find the relative error n

I8 — "o -36
—_— . 1000 =— " 2,
g/ - % as Mo 1009,

Thus, the relative error only depends on the dimensionless maximum deflec-
tion.

Let us study a numerical example. Let us set ng = 0.01. We then have

0= 107 22 100%0,01%.

In order to determine the stress, we must find the bending moment. We ob-
tain the following from the expressions (II.10) and (II.11l)

M=_le/1_(j_:)2ds_ (I1.16)

Let us expand the integrand in the form of a Newton binomial

mer (i (E (e T

Changing from the independent variable s to the dimensionless variable
£,

1 dv
—_—== = d

L& ds = ld§ (11.17)
and utilizing formulas (II.14) and (II.17), we obtain the value §§3 contained

in the integrand of formula (II.16)

do PPy BN\ PW [y Sgy  3Bya, Ops 3y
= EJ(& 2) 15(51)3(€+223 B4 8 8&) (11.18)

Substituting expression (II.18) in formula (II.16'), performing integration,
and confining ourselves to terms containing P in a power which is no greater than
the third, we find the bending moment

M= _.PI(]l —F) 4 ps__F (1_5_’ &g
/ ( €+ 2 (ENE \ 15 3 + 5 ).
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At the place where the strain gauge is glued onto the elastic cantilever,
the moment comprises

=—P[(l — s (2B B P
My =—PI(l —B)+P 2(EJ)2(15 3t 20), (11.19)

where 23 is the coordinate of the location where the strain gauge is glued on /127

A
(See Figure 66); the quantity B = —%.

Let us introduce the following notation

6, = I (1 —p); (1I1.20)
0, = Js_(lﬁﬂ B _ e
2 9N\ 15 3 + 4 20)‘

Expression (II.19) then assumes the following form

11.21
M = —0,P -+ 8,Pe. ( )

The stresses equal the following for a rod having constant cross section

M
o

g =

Just as previously, making the Chebyshev approximation (Figure 67) we ob-
tain the ‘analytical expression of the approximating line o, = CP. We may write

the relative error in the following form w

1 (P) Lt =,01P“92P3iﬁp_:&__1_9}_P2
g g, cP c ¢ )

The conditions for the minimum
6y s max |[n (P)| in the interval (AP_,P )
m’> m
} are as follows:

|

|

I

I

“q(le)z-OTl—l-—%z_).ZP;:m;

(11.22
'Y](Pm):gc—l”“l’—'%‘sz::’_m )

Figure 67. Curve for the Loading

of an Elastic Element of the Canti-

lever Type. Solving system (II.22) with res-
pect to the coefficients of proportionality
¢ and nonlinearity m, we obtain
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200 -6 (1409 P2

5 ;
0+ Py (I1.23)

201 — 02 (14 A9 P2,

C =
me=

Disregarding the second term in the denominator of (II.23), we may write /128
the nonlinearity coefficient in the following form

P2 g, (11.24)
m~—"2(14+23).
5 el( + %)
Substituting the values of 61 and 62 from formulas (II.20) in expression
(II.24) and setting (Umn):: Palt (5,
! 38EJ (z )p:pm’
we obtain
5 15 3
—— B3 ——npe4__ -5
e 3 (P21 4 AT z;f; (I1.25)
= 10( ! ) 1—p '

For purposes of simplicity, the nonlinearity coefficient is sometimes es-
timated, based on the maximum stresses at the seal of the elastic element. 1In
this case, assuming that B = 0, we obtain

m= —13— (”-‘;”L)Q(l +2). (I1.26)

We shall illustrate the calculation of the nonlinearity coefficient ac-

v
cording to formula (II.26) by means of an example. Let us set —%Eﬁ 0.01 and A = 0,1,

This indicates that we may perform the measurements, beginning with 0.1 of the
entire length of the scale. Then m = 0.003%.

We may represent formula (II.25) in the following form

mo= 03 (L (1 408) (1484 — 200+ 2p )

In this expression, it is not necessary to take into account the terms
which have an influence upon the second and subsequent significant digits for
the coefficient m, i.e., we may confine ourselves to the first two expansior terms.

In order to obtain a higher electric signal, an elastic element is some-
times employed which does not have a constant cross section, but is in the form
of a beam of equal resistance. Let us determine the nonlinearity coefficient
for such a beam, starting with the stress at the seal,
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Since the curvature of the elastic line is constant along the axis of the
element in this case, the equation of the elastic line has the following form

EJ g
where, taking into account the uniformity of the right hand side, we may assume
the following (Figure 68).

M= P (I —Al); [— Al = psing; J = J,.

Expressing the angle ¢ in terms of the length of the arc and the radius of /129
curvature

)
P ="
p
we obtain
1 P .
— = ——psin—,
[ Edq 4

where JO is the moment of inertia of the beam cross section at the seal.

. L. . s . .
Let us expand sin > in series in this expression

1 2 4
Lo (ki)
e EJ, 3lp2 5lpt
. .1
Due to the smallness of the displacement and, consequently, the ratio ;,

we may confine ourselves to two expansion terms

1 Pl (1 2 )
LR L b - ,
P EJ, 31p2

from which we have

e Bl B2
TR P T

Solving this equation and discarding the negative value of the radius of
curvature, after expansion of the radical in series we obtain the following

_ Eh RN
—Pz{“r ( )

—la () Tk

119



Based on the same considerations
as previously, let us only retain two

3 4
p terms of the series
—— ;
¢<_x—j\' ,p p=%[1+_1_(2P12>2]
at Pl “A\NEL] T
L
. For a beam having equal resistance
q/// and constant height h, the stress equals
2 Eh
g =—
4 ¥
el
i With allowance for the formula
obtained for p, we obtain
. Phl
Figure 68, Deflection of a Canti- °= 1 (P22
lever having Equal Resistance. 2J{14—?i'(EJ )]
0
Decomposing this expression in series and confining ourselves to two ex-— /130
pansion terms, we finally obtain
G == OIP._..62P3’
where
5
Ol — _I.Ll_.; 62 — _L_L_
2J, 127 (EJ )2

In order to determine the nonlinearity coefficient, we may employ formula
(IT.24). Substitution of the values obtained for 61 and 62

17pP,12\2
mo - m 2
3 (QEJO.) (1422,

Setting
Pt Do

2EJ, l

where Vom ~ is the deflection of the end of a beam having equal resistance, we

obtain

m= —; (U—‘;”‘——)z(l + 3,

i.e., as compared with a beam of constant cross section having the same values

v
of —%E-,and T, the coefficient m of a beam having equal resistance is approxi-

0
mately 107 greater. Comparing the ratio -1 for these beams (in the case B = 0), we

%
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can see that it is 2.5 times greater than a beam having equal resistance. This
means that in the case of identical stresses the nonlinearity coefficient for a
beam having equal resistance is greater, and consequently its metrological pro-
perties are worse.

5. Elimination of Nonlinearity

We may compensate for nonlinearity by a structural method in certain
elastic elements. Without dwelling on the compensation methods, let us ex-
amine one specific example with a cantilever (Figure 69).

The problem is as follows. We must find the values of LA and y for which
the lever arm P remains unchanged during its action, and consequently the moment
is constant.

Let us introduce the following notation:

A - horizontal displacement of the point b in the case of the cantilever
deflection;
Aba— horizontal displacement of the point _a resulting from rotation with

respect to the point b.

It may be seen from Figure 70 that

Bpa =TxCOS[y — 0" ()] —r cosy =r [cosy - cos o’ (I) -
+siny - sinv’ (/) — cosyl.

Let us expand cos v' (1) in series and let us discard terms with v' (I) /131
in a power higher than the second. After simplification, we obtain

o' (h)*

A, =0 (l)resiny — 0

7, Cosy. (1I1.27)

The displacement Ab may be rea-

dily described, by examining the expre-
p ssion (II.11) and assuming that x = I,
/z\\ Expanding in series and confining our-
U o
’ selves to two terms, we may approximately

2 <<;bf?r assume that
gr PR LruTIoTT Te—1L

EN

° - bl a’
-

1
/:/ Ab 9
\b{[
Ap-4
L6 Cha
Ab L0 Cha

The total horizontal displacement

~.
~.

1
j[v’(l)lzdx- (II1.28)
0

Figure 69. Diagram of the Compen- A of point a has the following form
sation for Nonlinearity of an A=A, —A,,.

Elastic Element of the Cantilever

Type.
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From this point on, it is natural to require that the lever arm P
differ from a constant quantity by a minimum amount, or, in other words, that the
quantity A approximate zero in the best way. However, as will be seen below, it
is possible to satisfy the condition that the quantity A is identically equal to
zero
A,—A, =0
P (11.29)

for any value of the force P in the interval

;‘Pm<P<Pm'

In this case, the lever arm P will be unchanged throughout the
entire measurement process.

It may be seen from formulas (II.27), (II.28) and (I1.29) that it is nece-
ssary to determine the expression for v', after which the problem may be readily

solved.

In order to determine the angle /132

a of rotation at the end of the cantilever,
////? let us transfer the force P from point a
18 ‘ a to point b, with the addition of the cor-
s vi(l) Wj/’//7 responding moment M. In this case, the
by I H deflection due to the force P comprises
L4y,
0 Pix? + Px3
P 2EJ ' 6EJ’

Figure 70. Displacement of the Com-

pensating Lever. and the deflection due to the moment M

comprises
0. — Mx?
M 9py

Employing the principle of superposition we obtain the total deflection

_Mx® Pix? Px3 (II.30)

2L 2EJ 6EJ

Differentiating equation (II.30), we obtain the expression for the angle
of rotation

v':—%‘[(ﬂ+ 1)—i]. (II.31)

Substitution of the dependence (II.31) into formula (II.28) and subsequent
integration yield
M 5 Py 1 P

87 sy o4 (Enr ' 15 (Ear
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Since the moment equals

M=P.r,cosy, (I1.32)
we then have
A — 1 Pzr:‘: cas? 7I3 5 Prcos it 1 Pps (11.33)
&t s (EJy 4 (B2 15 (EJ)?

In addition, let us find the displacement Aba' The absolute magnitude of
v'(l) must be included in expression (I1.27) according to the definition of Aba

(See Figure 70). After certain elementary simplifications, we obtain

Ay, = Mridsiny + Priffsiny  M?ril®cosy PMrl®cosy
EJ 9EJ 2 (EJ)? 2(EN2
__ Pirdt-cosy

8 (EN?

Substitution of equation (II.32) yields

Prz [siny-cosy Pr.%siny P?rﬁ/2 cos?y P%féﬂ‘cosz 1 .
Ao = g T oms 2 (£J)2 2 (Ed)? (11.34)
Perltcosy
8(LJ)?
After certain simplifications, we may write the condition for the un- /133

changed moment (1I.29) with the use of expressions (II.33) and (IL.34) as
follows

o4, 2 2.p _ 2 g8 cos? )_
% (B (31chos \34—3r,c cosy - s Fri Y (1T.35)

— 21iElT/ (2r2sinycosy --rdsiny) = 0.

The left hand side of equation (II.35) identically vanishes when the ex-
pressions in the parentheses equal zero.

For the case A = 0 and A = 7, we obtain the following equation with re-
spect to rk:

4
e N YR B B (11.36)

Here the superscript corresponds to the value A = 0, and the subscript
corresponds to A = T.

In the case A = 0, it is impossible to obtain a solution, since in this
case equation (II.36) has no positive real root. This is clear in physical
terms: the displacements Ab and Aab have the same signs, which does not lead

to compensation, but, on the opposite, leads to an increase in nonlinearity.
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Thus, the value of A = m is the only solution to the problem which has a
real meaning. The arrangement for an elastic element corresponding to this case

is shown in Figure 71.

We may determine the length 5

? of the compensating lever according to
equation (II.36).

N
N
i Taking into account only the sub-
l script, we obtain
4 2 2. t
[ Ay 2 2o (3
= g+ rd wﬂ_a( )
N I
\

Figure 71. Elastic Element with Lf we set % = Q§Z’ then this ex-

Compensating Lever, pression has the following form:

We shall solve equation (II.36") Pi*‘%ﬂﬁ'+'29k—‘{%::
approximately. We shall use qfo) = 0.5

as a rough root, and we shall refine it on the basis on the Newton method ac-
cording to the recurrence formula

on—-l
RAC ) (I1.37)

o =0V — 7, @)

/134

where

4 2 2
=p3 — — 2 —_ —_——
Flod =pf —5 05+ 5P~

The first approximation yields pl = 0.5802, Replacing ﬁgO) by qfl) n

formula (II.37), we obtain the following approximation qu) = 0.578.
Comparing both results, we see that the second approximation yields a satis-

factory result.

Thus, assuming that the length of the compensating lever is 5.~ 0.5781 <n

a real construction and making the lever more rigid than the basic beam of an
elastic element, we may practically eliminate the nonlinearity.

We must point out the following.

Since cantilevers have very small nonlinearity in the case of small de-
flections, only a small value is compensated. Due to this fact, it must be
expected that large deviations from the calculated value of 1 are of no

particular importance.
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Let us investigate this problem in greater detail. On the basis of ex-
pressions (II1.33) and (II.34), we obtain

1 1\2/ 4 2 2 2
o ( fj) (-—3— r2lcos’y -+ 3 rtcosy -} Ty 3 4 r3 cos? y) —

— 2%’; (2r2siny - cosy + rdsiny) =4, —A,,.

Assuming that A= 7 and setting P ST > we arrive at the following

expression

34 2, 2 2 olpa—Ap fEJN
Pe— 3ot 5o =2 ————(——-)- (11.38)

3715 ! P2
For the given value of O the right hand side of expression (II.38) is

constant. Designating it by the quantity U, we obtain

_ Ap, ——,Ai EJ\2
Ue==2 { (-Plz) * (II.39)

Figure 72 presents a graph for the dependence U = U(pK). In the case U = 0,

equation (II1.38) changes into equation (IL.36), and the point at which the curve
in Figure 72 intersects the abscissa axis serves as its solution.

It may be seen from the graph that U is small in a wide range of values for
the compensating lever arm. This means that great accuracy is not required when
constructing the compensating lever.

This fact also makes it possible to increase the sensitivity of the elastic
element (if it is insufficient), without changing its dimensions, since it is /135
apparent that the smaller is p, the larges the stress in the calculated cross
section, other conditions being equal. 1In addition, due to the small value of U
in the calculations it is possible to disregard the deformation of the compen-
sating lever., In this case, if the limiting, permissible value is given
Ava— By

l ?
which represents a relative change in the lever arm, calculating the quan-—
tity U according to formula (II.39), we may determine the value of p from equation
(I1.38). Taking the fact into account that the solution of the cubic equation
is difficult, and also considering the fact that great accuracy is not required,
to determine the quantity p it is expedient to employ the graph shown in Figure 72,

e =

However, most frequently the permissible value of the nonlinearity co-
efficient m is given, and not of the quantity e.

Let us transform the quantity U so that it may be expressed in terms of
the nonlinearity coefficient. The bending moment in the cross section corres-

ponding to the location where the strain gauge is glued on has the following
form with allowance for a change in the lever arm

M=P(l—r.—13)—P(A,,—A,).

125



Substituting the value of(Aba—Ab),

on the basis of formula (II.38), and in-

vr- 1 I [ ' / troducing the notation B = Ek—;-ﬂ, we
0 _ " Qf—éif obtain the expression for M in a form which
o e ai,,—y—»**‘ a6 f is similar to the dependence (II,.21)
904 Ao / M = OXP——G2P3,

F— v
///// where
908 —— A - - - 0, = 1(1—B),
/ o= L{ 2\ 4 4 5,2 2 (1I1.40)
: : 2_2(51)<px_§p”'3p” 15)

] The nonlinearity coefficient may be /136
- o o } determined by formula (II.24). Substituting
Figure 72. Graph of the Dependence the dependence (II.40), we obtain
U=1 (o) o PR ey
© 4(1—p) (EJ)(
By comparing the expressions (II.41) and (II.38), it is clear that, if we
introduce the following notation

Q12
0133

~

3_ 4 9,2 2
o3 — 202+ <0 15). (I1.41)

U=m—tC=0- (5 )2, (11.42)

PLU+M 2

then the form of the graph shown in Figure 72 does not change. It is sometimes
more expedient to start with the permissible values of the stress [o], which
provides the necessary signal, rather than with the limiting value of the force
Pm. In this case, formula (I1.42) acquires the following form

1—p)2 [ Eh \2
U=m ~—«(l +i)24(—[a]zl ) . (I1.43)

It is convenient to employ formulas (II.42) and (I1.43), since they con-
tain the unknown quantity B. In addition, the nonlinearity of the element may
be customarily determined, based on the maximum stresses of the seal. The
calculation may be thus simplified, since Za = 0, and consequently B = p .

Taking this fact into account and comparing the expressions (II.38), (II.39)

and (II.43), we obtain s 4o, 2 2
Py 3PK+3P"_15
(l —Px)a o (II.44)
where
. ‘/f? i Eh 2
V= o ( [01.1) (11.45)

A graph showing the dependence V = V (p ) is given in Figure 73. If the
value of Ok is given, we may then determine the magnitude of V based on ex-

pression (II.44), and then we may determine all dimensions of the elastic ele-
ment based on the formula (II.45). However, only the permissible values of
- the nonlinearity coefficient m and the stress [o] are usually known.. In--this
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case, it is advantageous to employ the graph shown in Figure 73.

Let us give a numerical example. Let us assume that the length of the
element is I = 10 cm, the thickness h = 0.2 cm, the permissible stress [o] =
= 2000 kgf/cm2 for Pm = 10 kgf, A = 0.1. We shall use the small quantity

m = 0.02% = 0.0002 as the nonlinearity coefficient.

We £ind V % 0.78 from (I1.45). We may determine P ¥ 0.3 based on the graph

given in Figure 73, The results obtained confirm the above statements. Using an
insignificant value for the nonlinearity coefficient, equal to 0.002, we obtain 1137
the value o = 0.3, which greatly differs from that found above P = 0.578.

Thus, for any length of the compensating lever in the interval 0,37 < rk<.

< 0.578 1. the nonlinearity coefficient does not exceed m = 0.0002 (it practi-
cally equals zero).

In conclusion, let us determine the

v width of the elastic element
b b= Pl —rd 50y
h2 [q]
0y -~ —> — If the structure of the elastic ele-
o bz 435 4% 05 //Qﬁ Fx ment is the same as that shown in Figure
g0 A // 71, the width of each plane comprises %‘=
a8l . . #y;ﬁﬂégz“‘“ﬁg,q = 2.5 cm.
r/’/ﬂ 6. Elastic Element of the Circular Type
graf—___ 1
0.133 - Let us examine the nonlinearity of
Figure 73. Graph Showing the Depen~ a circular type of elastic element having
dence V = V(pk). a constant cross section and small curva-

ture (Figure 74). This problem differs from that investigated above in the
fact that, if a change in the lever arm in the loading process is a quan—

tity of the higher order of smallness in terms of the fundamental displacements
for a cantilever, then for the given elastic element a change in the lever arm
consists of basic displacements. Therefore, it must be expected that cireular
types of elastic elements have greater nonlinearity than cantilevers.

Just as in the case of the linear formulation, let only investigate one
fourth of the elastic element, which represents a thin, curved beam fastened
on one end and loaded on the other end by the force %.and the unknown moment

Mb(Figure 75).
Disregarding the elongation of the ring neutral axis, as well as the dis-— /13
placements, and advancing the hypothesis of plane cross sections, we obtain the

well known relationship between a change in the curvature and the bending mo-
ment.
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— T, T = oy (II.46)

1 . . s
where R is the initial beam curvature.
0

S ay'P\gs y
B I%
A dr
' 30°
. w ]
Y
2 S
% ¢
7% Yo
e, 0
q\%?\?»
Po
r 0 ‘
g Moo b
a\Jﬁ)
z
Figure 74. Elastic Element of the Figure 75, Computational Diagram of
Circular Type. a Circular Type of Elastic Element.

If the width of the ring transverse cross section is considerably greater
than its height, then plane deformation occurs, and the following quantity

E

1—2 g

E =
must be everywhere assumed, instead of the modulus of elasticity E.

Let us select a fixed coordinate system x'y' (left handed) with the origin
at the free end of the beam. The curvature of the elastic line at an arbi-~
trary line A equals 4¥, where Y is the angle between the tangent at the point A

s
and the axis y' (See Figure 75). The bending moment at point A is

M = M0~—§— %',
It may be seen from Figure 75 that dx' = sin Y¥ds, and consequently
s
x’ =} sin 9ds.
0
Then the bending moment at point A assumes the following form /139
d I1.47
M= 0—“§-Yﬁn¢d& ( )

0
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Wm m

Let us substitute the curvature .I]i = % and the expression for the bending
moment (II.47) in relationship (II1.46), and we obtain
——jsmyds
a4y (11.48)
s

Let us differentiate both parts of equation (II.48) with respect to s

2
ey P sin ¢.
ds? 2EJ

Setting % = p, we obtain the well known differential equation of the elastic

line for a greatly curved thin rod

A AN I
T =y Sinds (I1.49)

which we shall employ to study the nonlinearity of the ring.

Equation (II.49) may be readily integrated. Let us multiply both parts of
. dy
the equation by s

ay ay .
<Y a(CL) = — L sin ydp.
ds ds ) EJ SN
Performing integration, we obtain

VL fdbN2_ p .
2 (ds) = gy st ten

from which we have

dd 2p 2% N Bl
——= - “—cos 2¢, == d co! Ll
ds 1/ gy ST A EJ P+ P

Setting
Q— . .P__
61EJ
we obtain S
v . 2p I
e !/ QE—JVI -}- Qcos v, (1I1.50)

Separating the variables and integrating the left and right hand sides of

equation (II.50), we obtain
5 ‘/l—}-Qcosy S‘l/&m 5

The left hand side cannot be integrated in terms of elementary functioms. 140
Expansion of the integrand in the form of a Newton binomial and subsequent
integrations term by term yield

1o 3 ./ 1.
[0 0sing + oo (—2'~ - sin 29 ) - (11.51)

— % o (siny —-Lsiney u + == -
16 ' 3 ‘7EJ €
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The integration constant c, may be determined from the first boundary condi-

tion: for ¥ = 0 the are s = 0. In this case ¢y = 0.

Thus, instead of expression (II.51), we obtain

. 3 ¢ 1 .
! Osinw - 22 ¥ 1 ¢in20) —
[ sm])}—s (2+4sm «g)

2
— 8o sin g ~—l~sm3q) s,
16 3 EJ

The second condition stipulates that the arc s Ro‘i’o for ¥ = ‘1’0.

(I1.52)

O

Satisfying this condition, we a: arrive at the following exXpression:

EJ H
Robo = 1/ 2p [‘r’o — 5= ‘2% +
(1I1.53)

3 5 1
Q%sin 29 — —- 3 [sin ¢y — — sin3 ¢ R
T 32 16 ( 3 in Y°)+ ]

We shall look for the parameter @ in the form of expansion in powers of p:
= Qop + Q"+ Gp* (11.54)

Squaring equation (II.53), substituting expansion of (II.54), and —- due
to the small deformation —- confining ourselves to terms containing factors of
p at powers no higher than the second, we obtain

2,2
Robo == —— (~-o +%p+ le ) [ $o — o sin g, (Zop -+ 91/) )+
), 2f 1 . 9, 3 .2 3 4 o
- sin Lo —— Uysin 204 ]| =
+ ( 1 Yo _I 8 Yo + 16 70 Yo
r .
= {“‘0'1)0 —--p (Qgﬂ"o sin gy — Ql":’g) —
2190 0 ¢ sig ¢ 03 (L g2 5.2
TP 250 e SIN G — £3g { — - sin B, -+ L +

3 .
g b0 in20) — b}

Equating the coefficients for identical powers of p, we obtain the following/1l41
system of equations:

2,2 [‘J
RO",)O: 9 E)O:)Oy

2a ind h2
Q5 sinp, — 042 =0;

1 3 .
29,2,b, sin &) — F [—sin? Y —l—inhg - sin 20 ) — 2,02 =0
4 8’ 16 "o 0

0

Subsequent solution of these equations yields
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2R}

Q= E7
o - “?0 sin :
‘-/0(5-1)z
Q,—- Ro (‘14_51112_5'1—&_ 3sin 2¢ _3).
(EJ)P 02 29,

Substituting the expansion (II.54) thus obtained into the solution (II.52),
we obtain

5= V 9+ Qp + %p* [‘z’ — len\) (Rop + 2% +
3 522/ ¢ .
- s Qp (—+——s1n2qa)].

2 4
After simple transformations, this expression acquires the following form
2
= >0 V 4 2 i_gi__q’_%«_ 11.55
s—'[\’o[q) p( sind — QO)—l—p(z o 5 o ( )

3Q, 302 302
——snw— + ¢ —}—Sll’l2f

Turning to Figure 75, we can see that an increase in the abscissa value
at any point equals

s 4o
A,V — 5‘ Siﬂ ',!)dS —"J‘ Ro Sin (‘E)d‘?' (II'56)
sy b
We obtain the following from expression (1I1.55)
2, ' Q, o? 39, 0sh &
= — > cosh — - A Tecosd
ds =Ry |1 p( A cos 00, ) -+ p? 2520 502 X 5 ¢
32 392
AT % cos 2(})] d"')—j Rosin vdd.
16 16 g
Based on formula (II.56), we may determine the increase in AxO at the /142

point where the load is applied

‘l,
2, 9 af @ &
A_\OzSROst[l—p(—E—cosy— 50, )+P (290 802
0
¢
3Q 302 302 o
= 4L_ cos b -} = 4 1‘6— cos 20} | db— | Rysin ¢do.
0
After integration, we obtain o
R Q . b § '
Ay = P,Q\"_[ 4"-(1 — €08 20g) — 0, (1 -—cos '{o)] +
a u 2
27 Q < 3Q
Hﬂ@ 2 L (1 —cosy) — - (1 —cos 29,) 4
2 Q  awl 8

02

T
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Deformation of the horizontal ring diameter (See Figure 75) equals

v = 2Ax,.

Substituting the values of QO’ Ql, 822 found above and replacing 2p = P,
we obtain the following expression for the deformation of the horizontal dia-

meter of a circular elastic element

PR3 1 sind, (I —cosd,) 1 .
0 = 2Ky = — [—‘"~ ¥ — — sin? q)o] +
EJ o 2
P’RS r/ 12sintg, _ Bsin2y 4 (1 — cos ) — (11.57)
8 (E)) [( v 24

— et (1 —cos 20) 4-2 (1 —cos )|
do
The first term, which represents the linear dependence, coincides with
formula (I.66)., If there is no rigid part of the elastic element, i.e.,

¥o= -;-, formula (II.57) acquires the following form

v = 2x, — fBﬁ(E__L) L RS (

ﬁ_i_L) (1I.58
EJ\® 2 2 (£J)? ' I1.58)

2 T 4

The first term of this expression is the linear dependence for the
ring, and the second component is a small nonlinear deviation from it.

Similarly to the deformation, we may determine the stress. For this pur- /143
pose, we first find the expression of the bending moment in an arbitrary cross

section. Substituting the value of the curvature -];, determined by expression

(11.50), in equation (II.46), we obtain

2% s 1 M, (11.59)
=L - Q _——
1/ ors V1 Heosy Ry  EJ

We may thus readily determine the bending moment.
Let us rewrite expression (IT.59) in another form

—_ 1 1
/2 5 7T 1My
Z(Q,4-2p F Q07 - cos b (2 Q)2 ——— =,
l/ EJ( o210 -+ 0% [1 - cos b (Zp + 21091 R Y,

Decomposing the expressions in the parentheses and the brackets in the form
of a Newton binomial and confining ourselves to terms with p i npowers which are
no higher than the second, we obtain

- 1 1

2 g7, 1 o7

Ry 9] — 2 “cosd(? Q p?) —
1/EJ[0 +-5 % 9 (Qp + 2pY)

1 A7 72
5 90 ij _}— 92p2) -

1
—Lof preosty—

(I1.60)

I -—’»2— a9 3 u
_TQO Qpreosy - — 2
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Let us substitute the values of Q> Ql, Qz found above in expression (I1Y1.60).
Let us transform and group together the terms with p and p2
- 2p3 o
pRo (COS b — »S”:_@_) JI_. _pEj_g [ S”‘],_vl cos q) R .1_c052 P
W o 2 (1I1.61)

__ 1 7 14sin2, 3sin 2, 3sin? ¢,
- (e e —g)p AEE ],

L H 244 207 v
Just as in formulas (II.57) and (II1.58), in this formula the first com-

ponent yields the linear dependence, and the second component represents a small
nonlinear deviation from it.

The moment in the horizontal cross section (¥ = 0) equals

2 ¥o 4ES | by

M, = PRy (1 _ sindg) + P2R8 sin d, - 1 2sin®d, 3sin 2¢ (I1.62)
) Yo 4 b2 8%

We may find the magnitude of the relative error n(P) in percent by dividing
the second component by the first

PR2.1009 sin 1 2sin® Y 3sin 2
(1) = - e e A i 'saj“ﬂ' (I1.63)
2EJ<I—«m?' ) 70 bo 0 |
Yo
Expression (II.63) also may be used to determine the relative error in [144

terms of stress for ¥ = 0. As is known, the formula for the stress has the
following form

=M
o= (IT.64)

For elastic elements having a constant cross section, the resisting moment
equals

where h is the height of the elastic element cross section.

Based on formulas (II.62) and (II.64), we may determine the stress in the
horizontal cross section
ind
%:z,PRiL(1_~<§Ei£).F

Y o (II.65)
PZRg.h sin'_po 1 2 sin? gbo 3sin 2410 *
8EJ [ Yo 4 3 8% ]

Expression (II1.61) makes it possible to determine the stress in any cross
section. However, we are interested in the stress at the point where the strain
gauge is glued on, i.e., in the horizontal plane,

Just as previously, we may find the maximum relative error, or the non-
linearity coefficient m, by employing the Chebyshev approximation (See Figure 65).
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Let us set

0, = Roh (1_ sinl};o); (11.66)

4 U
_ R3n [sindg +L__ 2sin® g, n 3sin2¢,
2 2 b 4 2 8d ?
8EJ o do o

and then expression (II.65) acquires the following form

00 = OIP + ezpz.

We may assume that the linearization condition has the same form as before,
i.e., based on formula (IT.4). For any value of P, the relative error is

P —§,P — p,P2
T =),

or
0 2P
1__1“0_9 =7 (P).

Excluding the initial section, in which no measurements were made, just as /145
previously we may write the following system of two equations, according to the

stipulations of the problem:
[ 01t 0APm ] — O F0Pm

= —m
c c ’

from which we may readily determine desired proportionality coefficient ¢ and
the maximum nonlinearity m:

o= 0 2P (1+W);
0P (=2
0+ 2 (1)

It may be seen from formula (IL1.65) that the nonlinearity decreases for

1
m=—
2

R,
RO‘*O"ZQ“*O,¢0—>O' and J » ®

For the case of small nonlinearity, the second term in the denominator of
the expression for m is always negligibly small as compared with the first term,
and it may be disregarded. The approximate expression for the coefficient m
has the following form

=L 0 p-y
"= olp’"(l N- (I1.67)
Let us give a numerical example. Let us calculate an elastic element with
the following initial data: P = 100 kgf, R0 = 20,975 mm; b = 12 mm; h = 1.95 mm;
¥ = 46°, The measurements may be made from the value of the load 0.1 Pm’ i.e.

0
A= 0.1.

We may determine 6, = 14,5 and 6, = 0.0018 from the expressions (II1.66).

134



Formula (I1.67) yields m % 0.6%, i.e., the value obtained for the nonlin—
earity coefficient is large, if the fact is taken into account that this coef-~
ficient characterizes the relative systematic error. For example, if a force
measuring device has 1000 divisions on the scale, then in this case the error
amounts to six divisions, even if random errors in the readings are not taken
into account, Thus, the assumption advanced at the beginning of this section,
stating that a circular elastic element has poor metrological properties as com-
pared with a cantilever, has been substantiated.

A comparison was made with experiment 1 for the numerical example presented.

Readings of the secondary device were made, which were proportional to the
effective stress at the place where the strain gauge was glued on, as a function
of the applied load. As a result of the experiment, the following nonlinearity
coefficient m* was obtained: .

m*=0,79%.

A 957 confidence interval was compiled for the nonlinearity coefficient /146

0,63% << m < 0,779, (I1.68)

This means that, with a probability of 0.95, the unknown value of the non-
linearity coefficient m, which was estimated by the quantity m*'< 0.7% lies with-
in the limits established by inequality (IL.68). Chapter III describes the
method for compiling the confidence interval for the nonlinearity coefficient m.

Thus, it may be seen that the theoretical value obtained for the nonlinearity
coefficient closely coincides with the experimental data.

It may be readily seen from the calculation of the nonlinearity coefficient
that similar formulas will hold for a ring with rigid sections, not only on the
vertical axis, but also on the horizontal axis (See Chapter I, Part 2). The
order of determining the nonlinearity coefficient does not change. Only the
integration limits of the angle ¥ change.

7. Nonlinearity of Elastic Elements Measuring Small Loads

Section 6 of Chapter I investigated elastic elements for measuring small
loads having a special device for producing considerable relative deformations
in strain gauges mounted on rigid columns. We shall study the nonlinearity of
the elastic element shown in Figure 50. Due to the symmetry of the equivalent
system (See Figure 53), we shall examine half of the beam.

We shall designate the load belonging to one half by the quantity P. Fig-
ure 76 presents a computational diagram.

The influence of the strain gauge on the operation of the elastic element

as a whole is taken into account by the influence of the bending mment X3 = XZe'

lThe experiment was performed in the electrotensometric laboratory of the
NIKIMPa under the guidance of A. I. Drabkin.
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As a result of the bending moment M.,

the angle of rotation at the place where
the load is applied equals zero. Since
the construction of the elastic element

/lé\ LP r provides for strict vertical displacement
2 \~ i}d» of the point of application of a trans-
4 \‘ﬁh verse load P, it is apparent that the
s . system under consideration elongates

to a certain extent Ac in the horizontal

direction. This means that the force T,

Figure 76. Computational Diagram for which influences the transverse deflec—

an Elastic Element Measuring Small tions of the beam, also influences the

Loads. system in the longitudinal direction. .
We may determine the force T, based on  [147

Hooke's Law

[
AC = j‘ de__-
J EF (3

On the other hand, we may determine the elongation of the beam Ac as a change

in the projection o the cantilever under a load.

Part 4 of Chapter II was devoted to the problem of the deflection of a cant-
ilever. According to expression (II.1l1l), the elongation Ac may be written as

follows
c 3
Ac=c— (1 +(2\]?
. [ \ dx } dx,

where the integrand is given in a rectangular coordinate system, in constrast
to formula (II.11).

We thus have ,
[

¢ 3
: 272

V Tdx o I e dx.

4 EF (x) dx

0 0

In the case of a constant beam cross section (just as in our case), we may

readily determine the following expression for the force T from this equation
3
[

= EF do 27
0
The force T, which acts in the direction shown in Figure 76, somewhat de-

creases the deflection. Consequently, the moments formed by the forces P and T
must have equal signs.

Let us formulate the equation for the elastic line. It must be noted that
it is not necessary to make precise allowance for the curvature for ordinary
elastic elements with strain gauges which are glued on, since this refinement
has no influence on the change in the bending moment and, consequently, the
stress.
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The situation is somewhat different in this case, since the value of the sig-
nal entering the secondary apparatus depends on the angle of rotation of the
cross section containing the rigid column, and not on the stresses arising in the
elastic element under a load. 1In its turn, the angle of rotation of this
cross section dpends on which value of the curvature is employed -- the precise
or approximate value. The differential equation of an elastic line, with
allowance for the longitudinal force, has the following form

d%
_dE_ o M Tu
PR T
[+ (&)
dx
The second term in the right hand side of this equation characterizes a /148

small nonlinear change in the bending moment when the elastic element is loaded
by an external load P. Let us determine the nonlinearity coefficient of the
system, which is the result of including the lomgitudinal force T and a precise
value of the curvature. Formulating the expression for the bending moment M
and substituting it in the differential equation, together with the value of
the longitudinal force T found above, we obtain the equation of the elastic
line

d2v
dt Pl =Mt XeFols—x) | Fo
R R EJ 7
1 dv\212
[ +(d") ] (11.69)

3
¢ =

= T ()T o

n

where E0 (s - x)is the Heavyside unit function which has the property

I, x<s
Eo(s—x)={ 0 x;S'

where s is the coordinate of the position of the rigid column, measured from
the elamped end.

Expanding the denominator of the left hand side and the integrand of the
right hand side of equation (II.69) in a series in the form of a Newton bio-
nomial, we obtain

v | Ple—x)—My+ X3Eq (s —x) __Fo Fv . 3 .,
° T e
0
3 ., ,
+“8—(U)4—1—16(0)6—}—...]5116}[1—%-(0')2—]— (11.70)

15 R ,
+~8—(v)4—%(v)s+...].

Expression (II.70) is an integral differential equation with small non-
linearity. We shall try to find its solution in the following form
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. II.71
U= pty -+ pfoy + pfo, +- . ¢ )
her <
where u = 3.
We find the following from formula (II.71)
0" = pog -k plo] + pio; - (11.72)
v = pog -+ p2] 4 pfo) 4 L.
/149

Let us determine the angle of rotation at the position of the column
Substituting the expressions (II.71) and (II.72) in

with the coordinate s.
equation (II.70) and equating the coefficients for identical powers of u, we
obtain the following system of differential equations in terms of the unknowns

Vor Vi» Vos see f
v = —(c—x) Mo Xefoli=2
v =v; =0, =0,
o ST M—X3Eo(s— %) ¢ "2,
275 [(c %) P ](”O) : (II1.73)
[
. 3EF .
= o voy (v5)%dx;
[

Let us confine ourselves to terms containing u at a power which is no higher
We find v(') and v0 from the first equation (II.73)

than the fourth power.
(—M)Huxin”%, 0<xr<s;
b P 2 (I1.74)
0 M, x2
Mo . .Lc :
e e ssase
X3\ x2
+ +C1x+D1, 0<xCs;

_(C_MT) 2
(11.75)

U, ==
S My @
c—") 2+ L 4 Cx+ D, s<a<e

It is apparent that expressions (II.74) and (II.75) may be rewritten in

the following form, by employing the unit function
- —‘MO —XaFals— x)_] X -+ *;'i + Con (x— sk

Vg = — [c »
Yy = — [C — M——'Xaio (s— \)] % + '%"‘ + szEo (-f —'S) +
-+ D,Ey(x—5),
where
[ 0,x<s

Eo(x—s)zl Lx>s
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The integration constants C, and D, may be found from the boundary condi-

1
tions v 0) = Y (0) = 0. We thus have c, = D, = 0.
We may find the constants C2 and D2 from the condition of compatability of

deformation at the point s, which may be written as follows
vy (s—0) =0, (s + 0);
Uy (s —0) = v, (s -+ 0).
Solving this system, we obtain

2___53‘5_- D, = Xasz‘

T2 2P

We finally obtain

E,(x —3);

v = ——[c— ﬂgfano,(izx_)] PR X3s
2 (I1.76)

P

_ Mo — X3E (s —x) x8
Y= —]|c—2"70 . A (AU oA
o [ P ] 2 a 6
Xasx E(x—s)+ X;,s E, (x —s). (I1.77)
We may determine the unknown mement M0 from the condition v(')(c) = 0. On
this basis, we obtain the following from equation (IL.76)
_ P [ X c?
Mo—‘T(T‘i"z—\- (IT.78)
We may determine vé from the third equation (II.73). Let us write this
equation, taking into account the solution (II.76), in the following form
= B At (B2 (034D 5 —
2 4 4
— B (242 — B) x — AB?],
where
A=c— M°_"x"i"(s—_—xl; B =% X"’s E,(x—5).
Performing integration, we obtain
r 3 [ x8 A B —2A2 A (A2 —3B)
v =2 A s 4 Al
z 2 [24 i PR 3 X (11.79)
_ BA*—B \ .
CAZD oo A ] Gy (x—s).

We shall not determine the integration constant C3, since it is not con-

tained in the analytical expression of the angle of rotation at the point s.

We may find the quantity vé from the fourth equation (IL.73). Substitution

of the solutions (II.76) and (II.77), subsequent integration and simplification
lead to the following equation

.. —Xallo (s — %) | x% x8
Y Z:Jc N{[ pD ] 9 —?’-’_
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+ qu X;,s (I1.80)
where
= & M\, S Mo\ Xec? (2 Mo
N_2o 4(0 )+3(C P)+P S(sc p)+
2 X3 X3 3 _MO_XS) ' X3 4
+CS(P) 3ps(c P )T e
Integrating equation (II 80), we obtain
0’ MO—X;,EO(S——X) =
ch N{[ ] 6 2
Xas (II.81)
+ 2P

It is not necessary to determine the integration comnstant C4 for the same

reasons that the constant C3 was not determined.

Combining the solutions (II.76), (II.79), and (II.81) with formula (I1.72),
we obtain the following expression for the angle of rotation at the point s:

v 0= —E0E () D[RO

El 2) 2| &
58 A s2 24 AN s (1I1.82)
X — A’ — — I______
[ 12 + 3 hc (A 4 )]’

where h is the height of the beam transverse cross section, and

A —e—Mo—Xs
P
Just as in the linear formulation of the problem (See Chapter I, Part 6),
in this case we assume that plane deformation occurs. Therefore, we may use

the quantity 72%7;2 as the rigidity during deflection.

Let us study the expression obtained (II.82). It consists of two com-
ponents, one of which represents the linear part, and the other of which re-
presents a small nonlinear part. As may be seen from the calculation, the
last term of the nonlinear component accounts for the influence of the longi-
tudinal force arising when a transverse load influences the angle of rotation
of the cross section with the coordinate s. The remaining terms of the non-
linear part are due to precise allowance for curvature.

Let us determine the influence produced by including the longitudinal
force, comparing it with the influence of including the precise value of the
curvature. For this purpose, we shall first determine the position (the co-
ordinate s) of the columns. It may be chosen by obtaining the largest electric
signal, consequently, at the point of the maximum angle of rotation. Assuming /152
that the bending moment X, equals zero and confining ourselves to the linear

2
portion of expression (II.82), we find that s = %'. In this case M = %2 and
c
Al =7 Let us assume that ﬁ'= 10. Formulating the ratio
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- 0
s3 »A'Sz 1 ZA', 32
12 g TAsS— 3
we then obtain
0, = 2 _ 190
T
96

This means that for a beam with clamped ends, which is loaded by a force in
the middle, the influence of ineluding the longitudinal force thus arising is 120
times greater than the influence of including the precise value of the curvature.

The bending moment X3 may be determined by the following expression (See
Chapter I,Part 6)

nrg*

X3=[c]~ 1

& (I1.83)

where e is the distance from the beam neutral axis to the wire frame (See Figure
50).

Let us determine the nonlinearity of the elastic element considered by way
of example in Part 6, Chapter I. Expression (II.82) may be represented in the
following form

v’ (s) = —8,P + 6,P3,

where .
0, = ——— s(A'—__f_),
£J 2 (I1.84)
3 /1 —v2©\3 3 rea 3
0, = — = ("> a| st A's .? 24 4N , sy
2 4 ( EJ ) s [ 2 p TAS— '3—~E( _T}]'

Satisfying the Chebyshev approximation, we may determine the nonlinearity
coefficient which has the following form, just as in the case of a cantilever
[See formula (II.24)]:

mz_l_P?n_Oi(l +22). (11.85)
2 01

Let us take a numerical example. Let us assume that the elastic element
has the following data: c¢ = 1.35 cm, ﬁ'= 9.93; s = 0.675 ecm; e = 1 emy j = 2.09.
. 10_4 cm4; E = 2'106 kfg/cmz; V= 0.3; P=1%kgf; n=4; d =0.002 cm; [o] =

= 2000 kgf/cmz; A =0.1.

Based on formulas (IL.84), we may determine 6. and 6,. The quantities /153

1 2
MO and X3 contained in (II.84) may be determined by equations (II.78) and (II.83),
o = 0.676 kgfem; X, = 2,51

= 7.46°10° > 1/kgf°.

respectively. Performing the calculations, we obtain: M

-1073 kgf cm; A" = 0.676 cm; 6, = 0.498-1077 1/kgf; 6

3
2
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Formula (II.85) yields m = 0.756.10 '%.

All the calculations may be greatly simplified if we may disregard the
bending moment X3 due to a small influence on the angle of rotation. Also

disregarding the precise value of the curvature, we obtain the following compu-

tational formulas: M Pc .
T

o' (8) = — 9P -+ 8,P°,

where
e;z.]_iﬁcz;
8EJ
9 /1—2\3 NS
64\ EJ ) he
¢
120

Using these simplified formulas and performing calculations for the example
given, we obtain m = 0.78-10~%4%, i.e., the nonlinearity coefficient differs from
that obtained above by a quantity which has no practical value.

We may study the nonlinearity of an elastic element in a similar manner in
order to measure small loads with elastic joints.

In each of the cases investigated in this chapter, the designer may employ
the magnitude of the nonlinearity coefficient to determine the accuracy and,
consequently, the applicability of this type of elastic element.

CHAPTER III [154

EXPERIMENTAL DETERMINATION OF THE NONLINEARITY AND HYSTERESIS OF ELASTIC ELEMENTS

1. Formulation of the Problem

The preceding chapters were devoted to the theoretical determination of
parameters characterizing elastic elements. As is known, each computational
diagram represents an idealization, which more or less precisely approximates
the real properties of the object under consideration. The linear formulation,
presented in the first chapter, provides an accuracy in the majority of cases
which satisfies practical requirements.

For example, it is not necessary to take into account nonlinearity when de-
signing elastic elements for strength and rigidity or when determining their sen-
sitivity, since the divergence between the calculated and the experimental values
is of no special importance in this case, even if this divergence amounts to
10 - 20%.

The situation is different when determining the nonlinearity. As was
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mentioned above, for elastic tensiometric elements, whose permissible error does
not exceed a fraction of a percent, the nonlinearity becomes commensurable with
the error and is so significant that we must reject even those elastic element
arrangements whose linearity causes no doubt in customary engineering calculations.
Therefore, the necessity arises of taking into account the nonlinearity, which

is a subsequent step making the idealized computational diagram approach the real
one. Nevertheless, the computational diagram differs from the real one, since
simplifying the hypotheses lie at the basis of the calculation, and several
important factors, such as hysteresis, are very difficult to take into account

at the present time.

Due to this fact, an experiment must be made to check the theoretical re-
sults, as well as to determine the hysteresis. Thus, if the validity of com-
paring the design for strength and rigidity with experiment occasions no doubts
for the reasons presented above, the following must be noted when comparing the /155
calculated and experimental value of the nonlinearity coefficient.

Frequently, a strain gauge is attached to an elastic element by means of an
adhesive film. Under a load, it is possible that the strain gauge may undergo a
displacement with respect to the elastic element. This phenomenon increases the
nonlinearity. Imperfect elastic properties of the material used to make the
elastic element also influence the experimental value of the nonlinearity coef-
ficient. The nonlinearity was determined in the calculation, with allowance for
the precise value of the elastic line curvature, and also for the fact that the
forces and moments pertain to a deformed state. Therefore, it is only possible
to compare the experimental and theoretical values of the nonlinearity coefficient
if it is certain that the influence of the strain gauge displacement and imper-
fect elastic properties of the material is small as compared with the influence
of factors included in the calculation.

This pertains to hysteresis. This study investigates only the experimental
determination of hysteresis.

A force measuring elastic element with a strain gauge, glued or mounted upon
it, is tested as follows. The elastic element is loaded by the force P, and the
readings v, from the secondary device are recorded, which are proportional to

the effective stress ¢ at the place where the strain gauge is glued on or mounted.
For the given device, we shall assume that there is an objective loading curve,
which does not depend on the number of loads, and an unloading curve which differs
from it (Figure 77). This assumption corresponds to reality if the elastic ele-
ment is first compressed. Based on the experiment with fixed values of P, which
are usually assumed to be spaced equally apart, we may determine several readings
of the device yij’ for which several loadings and unloadings occur. Due to random

deviations caused by different factors (a change in the temperature, induction
in the input cable, individual properties of the observer, etc.), the observed
values of yij will differ from each other somewhat.

The experimental dependence thus obtained must be approximated by the method
of least squares. The approximating curve and the parameters determining it are
random in nature, and serve as estimates of the unknown quantities characterizing /156




the elastic element. These estimates
y can be of a definite value only if the
limits of the possible error are given.
For this purpose, it is necessary to
determine the confidence interval, and
also the confidence probability (or,
as is said, the reliability), with
which this interval "covers" the un-
known constant nonrandom parameter.
This problem arises in a statistical de-

i’ termination of the nonlinearity coef-
Figure 77. Loading and Unloading ficient when there is a small number
Curves of an Elastic Element. of experiments.

The problem is different when hysteresis is being determined, which desig-
nates the discrepancy between the loading and unloading curves.

The readings obtained when an elastic element is loaded always differ from
the readings obtained in the case of unloading, due to the fact that they are
random in nature. Therefore, the curves approximating the experimental de-
pendences in the case of loading and unloading always differ from each other.
Is this difference accidental, or is it caused by hysteresis of the elastic
element? This question is probabilistic in nature, and consequently the so-
called problem of verifying the statistical hypothesis arises.

For this purpose, let us introduce a quantity which obeys a certain distri-
bution law and which characterizes the behavior of parameters which determine
the loading and unloading curves. This quantity is called the verification cri-
terion. Let us formulate an assumption regarding the absence of hysteresis.

In other words, let us introduce the so-called zero hypothesis. In order to
verify the hypothesis, we shall select a certain level of significance, i.e.,
a rather small value of the probability corresponding to the difference in the
loading and unloading curves which may be assumed to be practically impossible
under the experimental conditions. For the given level of significance, let
us establish the critical region; the probability that the selected criterion
follows within this region equals this level of significance. If the value of
the criterion obtained in an experiment falls within the critical region, then
consequently the zero hypothesis does not correspond to the actual data, and
it must be assumed that hysteresis occurs.

The region supplementing the critical region is called the region of per-
missible values. 1If the criterion to be employed falls within the region of
permissible values, it cannot be used to draw a conclusion regarding the ab-
sence of hysteresis: it can only be stated that the hypothesis of the absence
of hysteresis does not contradict observations. The validity of this hypothesis
must be admitted, at least until the experimental conditions are changed (the
number of observations increased, the experimental accuracy is increased, etc.).

The corrobaration of the hypothesis regarding the absence of hysteresis

means that it is not possible to distinguish between the experimental data
pertaining to loading and unloading, or to process them concurrently.
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Just as when determining the confidence intervals, we shall formulate the veri- /157
fication criterion on the assumption that the sample volumes are small. TIf the
hypothesis regarding the absence of hysteresis is not substantiated (the experi-
mental value of the criterionm introduced enters the critical region), we may

then determine the magnitude of the hysteresis characterizing it by the coeffi-
cient, for example, representing the maximum value of the ratio of the difference
between the loading and unloading curves to the running value of the quantity to

be measured.

For the coefficient thus obtained, we may formulate the confidence interval
characterizing the accuracy and reliability of determining this coefficient.

Further processing of the experimental results depends on the requirements
imposed on the metrological properties of the force measuring device being
tested. If an operational dynanometer is being tested, and the hysteresis may
be disregarded (due to its smallness, as compared with the permissible error),
then we cannot distinguish between the data obtained during loading and unloading.

If the requirements on the accuracy of the device are high -- for example,
in the case of a standard dynanometer —— then the data pertaining to the loading
and unloading curves must be processed separately. When a dynanometer is em-
ployed, the calibration data pertaining to loading and unloading must be utilized
separately in the corresponding cases.

In conclusion, we should note that the apparatus employed to determine the
nonlinearity and hysteresis represents a secondary device —- i.e., in essence we
are dealing with a tensometric force measuring device. Therefore, the deter-
mination of nonlinearity and hysteresis is always accompanied by calibration of
the device, and consequently we may determine its accuracy. An examination of
the metrological properties of tensometric force measuring devices falls out-
side the framework of this study. However, due to the fact that there is a
close relationship between the determination of the metrological properties of
the device and the processing of the experimental data, to conclude this chapter
we shall briefly discuss the problem of the accuracy of force measuring devices.

2, Smoothing Out the Experimental Data

The purpose of the experiment is to obtain the.dependence between the reading
of the secondary device and the force applied to the elastic element. The ex-
perimental points obtained have random deviations from the general patterm, which
are caused by errors which are unavoidable in every experiment. We shall smooth
out these experimental data by the method of least squares.

Let us introduce the notation. For purposes of convenience, we shall em-— /158
ploy the letter x* to designate the independent variable, which is the force P.
The readings of the secondary device, which may have dimensionality differing
from the force dimensionality, are designated by the letter y. Loading and un-
loading is performed when the device is tested. Thus, for each of the values

*#The fact that this notation was employed above for the longitudinal axis of
the beam should not lead to any confusion.
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of the independent variable x = X, (i=1, 2, 3, ..., n), which are usually
assumed to be spaced equally apart, we repeat the observations ki times, as a
result of which we obtain certain readings of the secondary device yij’ where

the index j designates the experiment number.

Selecting the functions ¢ =), 9 (X)y 2ees ¢ (x), we may write the de-

pendence between the observed quantity y and the independent variable x as
follows:

4
3
v= %aq% (2, (111.1)

where a_ are the unknown parameters to be determined.

The observed values of Yij contain measurement errors Sij:

!
Yy = Z %g Pq () + 8ij-
g=1
Assuming that the measurements are not equally accurate in the general case,
let us postulate the following assumptions regarding the random quantities &, .:
1]

(I11.2)

1. The mathematical expectation * 'of the quantity Gij:
Md; = 0.

2, In accordance with the assumption that the measurements are not equally
accurate, the dispersion of the quantity Sij is a certain function of x

D3, = o? (x)).

J

3. For different values of X the errors Gij are independent of each
other, ’

4, For each value of X the quantities Gij obey the normal distribution
law with the center at zero and the dispersion cz(xi), as follows from the

assumptions advanced above.

Frequently, these assumptions closely coincide with practice, although
sometimes there is a certain divergence. However, they simplify the solution
of the problem so much that their introduction is justified. The quantity o(x,)
may always be written in the following form, with a sufficient degree of accu-

racy
o () = 9,8 (), (III.3)

where the functions g(x) are selected so that the dependence (III.3) closely
approximates the effective change in the quantity o(x).

* For the basic concepts oE“Eﬁé_théofy_Bf‘ﬁrobability, see, for example, the
study (Ref. 3).
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The hypothesis that the dependence (IIL.3) corresponds to the real form of
the curve ¢ = o(x) is checked by the method given in (Ref. 3).

Everywhere below we shall assume that the function g(x) is known. Let us

formulate the function
[

Y = Zaqcpq (x). (111.4)

g=1
-The parameters aq represent estimates of the unknown quantities of equa-
tion (III.1). We shall assume that for each value of xi a number of measure-
ments is made, equalling ki’ which is different for different X, . 1f we use
the quantity P, = —El—-—— as the weight, on the basis of the method of least
o (x,)
i

squares it is necessary that the following quantity be minimal

Py ot ! 2

N N I \ 7 o (1. 5)
U= y v _ ’
I.>_—M_lj 2# o* (x‘:) [yj %a—qq’q (Y )} e

where n is the number of reference points.

The following system of equations is the condition for the minimum of this
expression:

ou
5{;«~O (p=12,...,0,
or in expanded form
SENEE ' (I1I.6)
2 D e ["’u —\; m("t)] 2 () =0, (p=1,2,...). '
Ti=0 1—1

Solving this system of equations, we find the coefficients aq. If the
functions selected ¢q(xi)’ (=1, 2, ..., 1) represent an orthogonal system for
the set of values of the argument x,, x,, ..., X , then the solution of the

1 2 n

system of equations (II1.6) is considerably simplified, since it decomposes into
individual equations. 1In our case, the orthogonality condition consists of the
fact that for any values of q # p we have

n

\‘} sy 76D B (1) 20 (111.7)

In this expression, the dependence (III.3) is taken into account. If the
measurements are equally accurate, i.e., ki = k const, oz(xi) =02 = const,

then equation (III.7) may be simplified as follows

M (I11.8)
o, ()2 () <0,

i1

/159
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If the functions chosen ¢q(x) are not orthogonal, they must be first or-

thogonalized. The rule governing the orthogonalization will be illustrated
below with a specific example, Therefore, we shall everywhere assume that the
functions %}x) represent an orthogonal system.

We obtain the following from equations (III.6), employing the condition of
orthogonality (III.7) and the relatiomship (III.3)

n

|
Z!gz (x) Uitp (3)

a, = s (I11.9)

<
;Zgz(xz)?"( )

where the following notation is assumed for the average value of y:

Z ¥y (I11.10)

h
In the case of equally accurate measurements, equation (III.9) assumes the
following form
n
Z Yiep x)

i=
a, =

Y=

(I11.11)

JE

1
(Pp (xl)

i=]

The quantity a_ determined according to the given small sample is a random
quantity which chaﬂ%es from experiment to experiment. Therefore, it is necessary
to employ the confidence interval to characterize both the possible error in
determining the unknown quantity ap, and the reliability of this determination.

Any confidence interval is found from the condition expressing the pro-
bability of satisfying a certain inequality. In the given case, it is necessary
to find the value € > 0 for which the probability of the inequality

a,—e<ae,<a,te
equals )\, Customarily, this condition is written in the following form:
P(ap——s<ap<ap—}—e) =v.

The probability A characterizing the reliability of the determination is
called the confidence probability, and the interval (ap - €, ap + ¢) is called

the confidence interval.

/160

The law governing the distribution of the quantity ap, which represents /161

an estimate of the coefficient ap, depends on the unknown parameters of § and,

in particular, on the standard deviation o, which may be determined roughly with
a small number of experimental points. Therefore, we must change from ap to the
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criterion which would depend only on the number of observations

n
N =Dk

=1

and on the form qf the distribution law §. Let us find this criterion. Let
us add equations (ITII.6) and let us subtract the quantity T o ¢ (xi)from them.
q=1

Employing expression (IIL.2) and the orthogonality condition (IIL.7), we obtain

n &, )
by ()
gzg’(ﬂ) vep
ap—a = i=l =1

: (1I11.12)
P n

Eg’(x) (%)

where the function g(x) is assumed to be unknown, just as previously.

The difference ap - ap represents a linear combination of the quantities
61j distributed normally with the center at zero and the dispersion cz(x ) On

the basis of the well known laws for the linear transformation of random,
statically independent quantities, we find that the quantity a

- ap has nor-
mal distribution with the mathematical expectation

M(a,—a,)=0
and the dispersion
3 1
D(a,—ea)) = - R — (I1I.13)
@‘k BE)
a2 (x;)

i_

Normallizing ap - ap’ we arive at the random quantity

(III.14)
- a)E/ (XD “——on (%) »

which satisfies the normal distribution 1aw w1th the center at zero and disper-
sion equaling unity.

Let us find the distribution law for the quantity
n_ & . ! v
D e N NI R
>:§ &4 a® () (ylj i) - > :4 a2 (x;) [J” ‘)—l‘ p(?ll( [)!
i=1 j=1 pals

Just as previously, taking into account the fact that the measurements are/16
not equally accurate, we introduce the weight
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Just as above, making identical transformations in the right hand side of
this expression, we obtain

ggigwu>%me"§Q§Smwo—
"E‘” q)zédazm 72 (x).

If allowance is made for expression (III.14), as well as the assumptions
advanced regarding Gij’ it may be readily seen that the first and second com-

(IT1.15)

ponents in the right hand side of the equation (IIL.15) consist of the sums of
the squares of normally distributed quantities with a mathematical expectation
equaling zero, and a dispersion equaling unity.

According to a well known theorem, the quantity
n
xzzzz%’

i=1
where the statistically independent quantities Zys Zgs +eey 3 are distributed
normally with the parameters 0 and 1, obeys the so-called x -distribution with k
degrees of freedom (in terms of the number of components), having the probability
density: B,

@ (%) = —_—l—;—x—z— e_—z— for x>0;

(3)

0 for x<0,

where T %’is the tabulated gamma-function.

On the basis of this theorem, the quantity in the left hand side of expres-
sion (III.15) has xz—distribution with the following number of degress of
freedom

k= D ky—L.

i=1

In order to obtain the criterion which we need, let us employ the following
theorem (Ref. 3).

If the random quantity t represents the special quantity

4

k
v ?
-- where z has a normal distribution with the center at zero and dispersion
equaling unity; v is a qfantity which does not depend on z; and v4 is distri-
buted according to the x“ law with k degrees of freedom -- then this quantity
obeys the so-called Student distribution law with k degrees of freedom, having

the following distribution density
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The form of this distribution law is shown in Figure 78, where the normal
law is also given, for purposes of comparison. When the total number of experi-
mental points is greater than 13, the curves barely differ from each other.

There are tables of the Student distribution function for k degrees of

freedom ,

Sy () = _S. s, (1) du.

Employing this theorem, on the basis of expressions (III.14), (III.15), and
(ITI.3) we obtain the following value for the criterion:

o U/Ey’;) % (%) Zk —!
t i=

g7 (I1I.16)

E/ 2;4.*.:;4 22 (%) Wy —YJ?
i=1 j=1

which obeys the Student distribution law with the number of degrees of freedom

n
Sk — L

i=1
Employing the criterion tq, we may

readily formulate the confidence inter-
val for the parametercxq characterizing

the accuracy and the reliability with
which this quantity is determined. Let
us assume that the probability of the
inequality

—ty <t, <t b (111.17)

equalsy , i.e.,

Figure 78. Student Distribution

P(—t <t £) = y.
Curve. (—L<t,<+H)=y (11I1.18)
There are tables for the dependence of tY on the probability y and on the 164

number of degrees of freedom, Sometimes the term r = 1 - y is employed, instead
of y. In this case, the boundaries of the interval (III.17) are called the r -
percentile limits for tq. When formulating the confidence interval, we should note

that inequality (IIL.17) is equivalent to inequality
a, — b, <o, < a, -+ 1S, (1IT.19)
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where

ZZ« ) T
B//Egz(x) o2 (%) /Zk—l

Inequality (III.19) determines the confidence interval, and y is the con-
fidence probability. 1In the case of equally accurate measurements, we have

Z ? (95 —Y)? . (III.20)

ag—ag Tl =

7 sq
E/Z ¥y (xl) VE@En—10)

The calculation is performed as follows. Let us define the large probability
v (or the probability r, depending on the manner in which the tables are formulated)

and let us employ the tables to determine the quantity tY for Zk - 1 degrees of
i=1"

freedom., By calculating Sq’ we may determine the confidence interval, based on
formula (III1.19), which will characterize the possible error entailed in deter-
mining the parameter uq, with the reliability v.

It was indicated above that, in order to approximate the experimental
dependence using the method of least squares, it is necessary to select the sys-
tem of functiomns ¢q(x), where q = 1, 2, ..., 1, which must be orthogonal for the

set of values of the arguments X;,X,, «.., X, If the selected system of func-
tions is not orthogonal, it must be orthogonalized. The orthogonalization pro-
cess is as follows.

Let us assume that we select the system of functions wl(x), wz(x), coes wl(x),

which is not orthogonal, Let us orthogonalize this system. We shall assume the
following as the first function

¢y (%) :.'1"1 (x),

and we shall assume the following linear combination of the first two as the
second function

@5 () == 9p (%) - bydy ().
We may determine the coefficient b1 from the orthogonality condition of /165
the functions ¢1(x) and ¢2(x). We obtain the following on the basis of equation
(I11.7)

L‘ ky Yy () [, X; —[—b ‘.!) (x,-)]: 0,
<42 (%) P s B
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1from which we have

11
zﬂwfmmwm
bl = -~ a E—— ] (III.Zl)

2
" 1(*)
;Eg (x)

Continuing the orthogonalization process, we assume the following as the
third function

@ (¥) = $a(x) + by [s (%) + b9, (0] + by, (x).

In order to determine the coefficients b2 and b3, the function ¢3(x) must
be orthogonal to the functioms ¢1(x) and ¢2(x). The orthogonality condition of
the functions ¢1(x) and ¢3(x) yields

Ebuﬂmwmo

A SE—
ELW)“W
pray

and we obtain the following from the orthogonality condition of the functions
¢,(x) and ¢,(x)

by= —— (I11.22)

n 2,
ve ey P2 09) 19 (50) + bohn ()]
;g;gﬁuo R o (I11.23)

by=— "7 ] .
b
E gT(;‘.f 92 (2 [92 (¥)) + buds ()]

We shall select the linear cowbination of the first four as the fourth
function, and we shall require that it be orthogonal to the three functions ob-
tained. In a similar way, we may determine the fifth function. The process is
thus continued until the entire selected system of functions is orthogonalized.

In the case of equally accurate measurements, formulas (III.21), (III.23) /166
are simplified as follows:

B

n
Db ) da 02 a4 (1)
by=— "' — b= — Ty
'1 "‘| 12
‘> b ;’:1 (%) % (111.24)
Z%wmw+wmm
b2 — i=1 . e
D G [0 + butba ()]

= J
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The elastic tensometric elements under consideration are characterized by
the fact that they have very poor nonlinearity, due to high metrological pro-
perties. Therefore, a polynomial is always selected as the approximating function,
and polynomials of the second and third degree are the most important in practice.

Let us derive the formulas for these two cases. In the first case, we shall
assume the system of functions x,x2, taking the fact into account that the curve
must always pass through the origin. Orthogonalizing this system, we shall select
the following as the first function

oy (¥) = 1, (II1.25)
and the following as the second function
.2
g2 (1) = £+ byx. (TT1.26)
Based on formula (III.21) we obtain
V-n k
g‘jgz(i) x?
PR £ (I1I.27)
\Qﬁwlyﬂ )
L4 gty

1f a_parabolic approximation is insufficient, we shall add the function
ws(x) = x~ and, formulating the linear combination of this function with the

functions ¢l(x) and ¢2(x), we obtain

g (1) = A0, (x%-1- 01x) - by .

(I11.28)

The coefficients b2 and b3 may be determined from formulas (III.22) and

(IT1.23):

~~
=
(o)}
~

ey by = — 2 . (I1I1.29)

WA Y
2 iy 0+ 0m) igm» g

by =

Yk AN
_ El‘m ( +b3) )g ") i

Thus, in the approximation of a polynomial of the second degree, we must
employ the system of functions (ITI.25) and (III1.26), and the coefficient by

is determined from formula (III.27). For a polynomial of the third degree,
we must add the function (III.28) to the functions (III.25) and (III.26), and
to determine the coefficients b2 and b3 we must employ formulas (III.29).

If the approximation of a polynomial of the third degree is unsatisfactory,
we must employ a polynomial of higher degree. The agreement between the experi-
mental dependence and the approximating curve is very important, since the form
of the theoretical curve may be used to determine the properties of an elastic
tensometric element and its suitable application in a device being designed.
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In the simplest case, when there is no necessity of solving this problem
precisely -~ for example, in a preliminary determination of the closeness be-
tween the experimental and theoretical curves -- it may be assumed that the
approximation is unsatisfactory if the scatter of the experimental points is
approximately symmetrical with respect to the smoothed curve.

For a precise solution of this problem, it is necessary to introduce the
eriterion characterizing the closeness between the experimental and theoretical
relationships, whose magnitude could be used to determine whether the selected
approximating curve is satisfactory.

Let us derive the theorem which may be used to obtain such a criterion.
Let us assume that U and V are independent random quantities, each of which
is distributed according to the x2 law with the degrees of freedom kl and k2,

respectively., It may be stated 1 that the following quantity

= Uk,

Vk,

has the so-called F-distribution, which has the following probability den-
sity

LIS
Bk r (-k‘—g kz—)klz ky"
cof Cp == —
?() = w0 o(5) e (%)
(i A-kof) © 2 2

Figure 79 presents a graph giving the probability density of the F-distri-
bution. Let us investigate the quantity

n n
w k — A TR ARNI A N2, 2
\5q ! (’Ji—‘yi)2 : E} . ifo?”_'§§ 5 (a, %) o (¥3) (ITI1.30)

{;14 a? («VJ

where the values Yi and §i are determined by formulas (III.4) and (III.10),

respectively, and the arithmetic mean E; has the following form

ky
N
j% o1
5= -1
0. ::\-I - ———

i kl.

1

See H. Reisser. Ingenier-Archiv., No. 1, 1929,

/168
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The left hand side of expression
(III.30) has the x2-distribution with
olf) (n - 1) degrees of freedom.

Let us assume the following as the
second quantity

- > V§402(‘51) U=

h fa £ = 1 j==1
Figure 79, Curve of the F—Dlstrlbution.
\y Y}‘ v Y m G ), (111.31)
= 02(*) / ' Lo o ()
l i=1
which has x -dlstrlbutlon with Ek - n degrees of freedom. On the basis of the
i="1
theorem given above and dependence (I11.3), the quantity
A n“ *__lfl _ . n1
>4g2<x1) (=7 2y n
F=- 3= T (II1.32)
\*i\‘i 1 —\a
> (v~ 50"

Lok :;_“’ ('i)‘ I

1Y G

n
has the F-distribution with n - 1 and Zki -~ n degrees of freedom. The F criterion
j=1

obtained makes it possible to determine the closeness of the experimental and
theoretical curves.,

The discussions, which provided the basis for determining the laws governing /169

the distribution of quantities determined by expressions (III.31) and (III.32),

are only valid if the theoretical curve differs to an insignificant extent (for

the given experimental conditions) from the experimental relationship. Thus,

the so-called zero hypothesis is employed when deriving the F criteriom, i.e.,

the hypothesis regarding the agreement between the experimental and approxi-

mating relationships. 1In order to confirm this hypothesis, the critical region

is selected, and the following two intervals are assumed as this region:

0 FFy;
F>F,.
This region corresponds to the cross hatched areas in Figure 79. A suffi-

ciently small value of the probability (the so-called level of significance) is
then selected, which determines the critical points Fl and F2, and we have

P(F>F) = -"-and P(F <F)=-~
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The level of significance r is assumed so that it is practically impossible
to enter the critical region. The selection of this quantity is determined by

the speci
is 1 or 5

fic conditions of the problem. Customarily, the level of significance

%, and sometimes 10%. There are tables of the r - percentile right

critical points F, for the F-distribution. The left critical point F1 is de-

2

termined by the fact that it equals the right critical point of the F'-distribu-

tion, whe

The

1 L =
re F' = 7

quantity F may then be determined from the experimental data. TIf' the

experimental value of the criterion F falls within the critical region thus sel-
ected, it is then apparent that the form of the approximating curve employed is
unsatisfactory, and subsequent terms of higher order are added to the chosen

system of

Let

functions.

us give a numerical example. Three loads are applied and, respectively,

three unloadings of an elastic tensometric element, representing a column with
strain gauges glued onto it. The readings of the secondary device are recorded
during the loading at intervals of 2000 kgf. Thus, for each value of the load

X., three
i

readings of the secondary device are obtained, corresponding to the

loading curve, and three readings of the secondary device are obtained corres-
ponding to the unloading curve (Table 2).

We shall process the data pertaining to the loading and the unloading sepa-

rately.

We shall first investigate the readings pertaining to the loading, and /170

shall determine the orthogonal functions, assuming that the polynomial of the
third degree passing through the origin is the approximating function. Ortho-
gonalizing our system, we shall employ the functions in the form of expressions

(I1I1.25),

(IIT.26) and (ITII.28). We can determine the coefficients bl’ b2 and b3

from formulas (III.27) and (III1.29). Taking the fact into account that the mea-
surements are equally correct in our case, and ki = 3 = const, we obtain

24
PR i S 1800 818182;
1 5 220
\
2
i=1
5
2
2, X (x? -J- bsxi) oy
by= — =1 . ggﬁt,fg_Q — —14,3479;
3 o
:\>1 x‘? (t‘Z -I- blx,-)
=1
5
>
b _i4 _ 15864 g
’ 5 220 o
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Readings of the Secondary Device

Loading
in kgf Loading Unloading Loading
0 0 0 0

2,000 10,043 10,038 10,043
4,000 20,092 20,082 20,082
6,000 30,150 30,140 30,145
8,000 40,200 40,200 40,205

10,000 50,240 50,240

Unloading

0
10,048
20,077
30,130
40,200
50,240

Lbéding

0
10,038
20,087
30,145
40,210
50,250

" Unloading

0
10,033
20,077
30,135
40,180
50,250

Thus, we obtain the following orthogonal system of functions
o1 (x) = x;
@, (¥} :22—8,18182- x;
73 (¥) = A% — 14,3479 (1% — 8,18182x) — 71 2% =
= x4 — 14,3479x% -1- 46,1919,
We may calculate the coefficients aps 23y, and aq from formula (IIT.21).

(171

In order to draw a distinction between the coefficients pertaining to the loading
and unloading, let us employ the additional index 1 for the first ones, and the
index 2 for the second ones:

5
N
\>‘* 4%
= _1105383,8 )
ayy = = = T = 50245,
B 2
e
51
/ Yrp2 (1)
= 228,07 _ (9435 { (T11.33)
an 5 " 926,728 R
2 ’
>, 2 (%)
i=1
5
> _
Yup3 (%)
a_—% __ 88 (1830,
317 "5 4848, 41 ’
' .3
EZ 3 (%)

Finally, the equation which represents the loading curve to the best extent
has the following form

Y, = 5024,5x +- 0,2435 (x* — 8,18182x) —
— 10,1839 (x* — 14,347942 -+ 46,1919x) =
— 5014,12x + 2,8821x2 — 0,1839x2.

(I11.34)

The coefficients a 31° representing the determination of the un-

11> %210 2
known coefficients ®qq0 a21, a31, are random quantities, since they are obtained
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on the basis of a limited number of experimental points. Therefore, we must es-
tablish the accuracy and reliability with which these coefficients are determined.
As may be seen from expression (I1I.19), we must determine the quantity sq. Taking

into account the equal measurement accuracy, as well as the fact that q; = const =

= 3, we obtain

s 3
1/ 22 wy—vre

_ i=1 j=1 I 295,9 o
5 = = = T =1 990 . 36 0,193.
‘/2‘, ¢} (x) V3353
=1
We obtain the following from the table of r-percentile limits for the /172
Student distribution (Ref. 3), setting r = 5%, for twelve degrees of freedom

{o=2179.
T b

On the basis of inequality (III.19), we obtain
5024,5 — 2,179 - 0,193 < a;, < 5024,5 -1- 2,179 - 0,193.

Finally, the 957 confidence interval for the quantity aqq is
5024,08 < a4, < 5024,92.

The meaning of the confidence interval obtained is as follows: we know the
precise value of the nonrandom quantity Qg However, this quantity lies within

the interval (III.35) with a probability of 0.95. For further calculations, in-
stead of the quantity agqs we shall employ its estimate determined by the first

of expressions (III,33),

(I1II.35)

In a similar way, we may determine the confidence intervals for the constants

a21 and 0!.31: 0,04<a21<0’45;
— 0,274 < a5 < 0,0939.

We shall not process the experimental data pertaining to the unloading curve.

The final results have the following form
ay, = 5023,6; a,, = 0,6031; a,, = — 0,086;
5023 < oy, < 5024,2;
0,3 < a,, << 0,908;
—0,1957 < ay, <€ 0,048,

The functions ¢l(x), ¢2 (x), and ¢3(x) remain as before., The unloading curve
may be described by the relatiomship

(I11.36
Y, = 5014,7x -+ 1,837x2—0,086x%. )
It may be seen that comparing the expressions (III.34) and (III.36) that
the unloading and the loading curves differ from each other to a certain extent.
A subsequent chapter will be devoted to the problem of whether this difference
is only a random phenomenon of the experiment, or whether it has a definite cause.
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On the basis of the approximating curves obtained above, we shall determine
whether it is necessary to take hysteresis into account in the example under con-
sideration. Naturally, the approximating curves must be close to the experimental
relationships with sufficient accuracy during loading and unloading.

The F criterion for verifying the agreement between the theoretical and /173

experimental relationships, determined by formula (III.32), assumes the following
form for equally accurate measurements

n
/1 (;J—i_yl)z
= _k(nk—n) (I11.37)

n—1

Fz:‘*‘; R
X 8 —
}i ;Z (ljzj—yz)2
i=1 j=1

and has a F-distribution with n - 7 and nk - n degrees of freedom.

For our numerical example, the experimental value of the F criterion for the
data pertaining to loading is as follows, based on formula (III.37)

31,8 3.(3.5—5)

F = . = 2,38,
200,6 53 -
Based on the table of %—percentile right critical points in the case of
2 and 10 degrees of freedom, for a 10 percent level of significance we obtain
F2 = 4,1, and for a 2 percent level of significance we obtain F2 = 7.56. A 5 percent

probability was used as the basis above, when formulating the confidence inter-
val for the numerical example. In this case, in order to determine the right
critical point for a 5 percent level of significance, we could resort to linear
interpolation. However, there is no necessity of this, since the experimental
value of the F criterion falls within the region of permissible values, not only
in the case of a 2 percent level of significance, but also for a 10 percent level
of significance.

Thus, the hypothesis regarding the agreement between the approximating and
experimental relationships has been corroborated.

A similar conclusion may be reached regarding the approximating curve for
the experimental points during unloading. The experimental value of the cri-
terion F = 1.42, corresponding to this case, also falls within the region of
permissible values.

3. Determination of Hysteresis

The presence of hysteresis reduces the metrological properties of a force
measuring device. The construction of an elastic element and the material from
which it is made must provide minimum hysteresis which does not exceed a per-
missible value, Therefore, when testing new types of elastic elements, it is
necessary to determine the hysteresis which is one of the causes of systematic
errors in the readings of the device. However, this is complicated by the fact
that the curves, which "smooth'" the experimental dependences during unloading
and loading, always differ from each other, since the coefficients aql and [174
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2,2° (g=1, 2, ..., l)are random quantities. In particular, this was the case

with the numerical example investigated in the preceding section, and there was
a significant difference between the coefficients in the case of nonlinear terms.

Consequently, we must solve the problem of whether this difference may be
explained by random phenomena of the experiment or whether 1t <s so great that
it can only be caused by an unavoidable random scatter of the readings. 1If the
difference is significant, it may be concluded that hysteresis is present, i.e.,
the difference is not caused by a random phenomenon. This conclusion is pro-
babilistic in nature.

Let us obtain the criterion which may be used to determine the presence or
absence of hysteresis. Let us investigate the difference between two normally
distributed quantities (aql —qul) - (aq2 - (ﬁ2>’ in which —-- just as previously —-

the index 1 indicates that the quantity pertains to the loading curve, and the
index 2 pertains to the unloading curve. The distribution center lies at zero.
Based on expression (III.13) and the theorem regarding the dispersion of the sum
of independent random quantities, the dispersion equals
D [(aql - aq]) - (aq‘.! - aq2)] =
1 1 —
= “‘q{ \ =t e (I11.38)
N Er 2 31 Bs o
DIFHE) e

r=1 s=x1

This expression is written under the very general assumption that, in the
loading and unloading process, the instrument readings are recorded for diffe-
rent values of the independent variable x, and that the readings were recorded
a different number of times for each value of x, However, in practice tests are
not made in this way. Therefore, we shall assume everywhere below that in the
loading and unloading process the readings are recorded for one and the same
values of x, and for each value of X, the number of experimental points kr

in the case of loading is the same as the number of experimental points kS in
the case of unloading.
We thus have
,Vr - Xs G xi;
Af’ = ks = /el;

”1 = nz =M.

Thus, expression (III.38) acquires the following form

D (ap —ou) — (g — )l =, & —,
RN (111.39)
DR
i.:1
from which it directly follows that the quantity 175
(”ql - a:/l) - ((7112 - "{]2) "L‘ ky
z, == A YUY o2y,
a V?. .’_102 (x,-) (‘Pq(xx)
i=1 (IT1.40)
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has a normal distribution with the parameters 0 and 1.

Let us formulate the following quantity:

[(ag1 — ag1) — (ags — a42)]? &j o2 (;) q (%)

- A (11I.41)
, .

It represents the sum of the squares of 7 random quantities which have nor-
mal distribution with the center at zero and dispersion equaling unity. Conse-
quently, based on the theorem presented above, it has x2- distribution with 1

degrees of freedom. On the basis of the same considerations employed to derive
formula (III.15), the quantity

S
v -;> ,> gy [0 =Y (0 = V.)°] (I11.42)

has x2—d13tr1but10n with 2§k ~ 27 degrees of freedom.

The indices (1) and (2)
i=1"

in formula (III.42) are employed for the loading and unloading, respectively.

Employing expressions (IIT.41) and (IIT1.42), based on the theorem presented

above, and taking into account the relationship (III.3), we obtain the following
criterion

T

>—J {[([7111—@(,1) — (ag2 — ay0)]? - ot ( l)} \1 ke

e 10<¥> .

Fotxl R R EETE (III.43)
a1 1 :

D)t = -]

!

which has F-distribution with 7 and 2(2 k - 1) degrees of freedom.
i=1"

obtained in each specific case leads to the conclusion (which is probabilistic

in nature) of the presence or absence of hysteresis.

The criterion

In the case of equally accurate measurements, we obtain the following cri-

/176
terion

K n

e ) el Y] () K (en = 1) (TTT.44)
Fo.—ill i1 b .

e ® =
\g ‘[(VS) 4,/1) (Jg) yQi)sy
x l / =1

which has F-distribution with 7 and 2 (kn - 7) degrees of freedom
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We shall make the next calculation as follows. Just as in the case of de-
termining the agreement between experimental and theoretical relationships, which
was examined above, we shall select the level of significance r, which may be

employed according to the tables given in (Ref. 3) to determine the ghpercentile
right critical point F2 for the F-distribution. We then assume a zero hypothesis,

i.e., we assume that

o'ql. = a’q2
and we employ formula (III.43) —— or, for the case of equally accurate measure-
ments, we employ formula (III.44) -- to calculate the quantity F according to

the experimental data. If the experimental value of F falls within the critical
region, i.e., the following occurs

F>F,,

which is assumed to be practically impossible under our conditions, we must then
reject the hypothesis which has been advanced and conclude that hysteresis is
present. If F falls within the region of permissible values, i.e., if the fol-
lowing occurs

F<F,,

it may then be assumed that the hypothesis of the absence of hysteresis does not
contradict the experimental conditions.

Naturally, this does not lead to the conclusion that hysteresis of the ela-
stic properties is absent in the material used to make an elastic tensometric
element. By changing the experimental conditions, i.e., by increasing its ac-
curacy, or by changing the number of experimental points, we may detect hysteresis,
no matter how small it may be. However, verification of the statistical hypothe-
sis indicates that under the conditions of the given experiment there is an in-
significant amount of hysteresis, and the divergence between the loading and un-
loading curves may also be produced due to random measurement errors. In this
case, no distinction may be drawn between the loading and unloading curves, and
all the experimental data are processed concurrently.

Sometimes, if hysteresis is detected, it is necessary to obtain the quantity
which would characterize the extent of hysteresis.

We shall assume that the elastic tensometric element has small nonlinearity./177

This means that the curve .
N\
y= j>.{g”q * (Pq(x)
7l

differs from a straight line to a very small extent
Yy = cx.

Let us study the quantity

3
N (g1 — 2g0) 7 09 (111.45)

= "'

cx
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Expression (III.45) characterizes the divergence of the loading and unloading

curves pertaining to the value of the quantity being measured. The largest val-
ue of @I is naturally assumed as the coefficient T' determining the extent of hys-

teresis. This approach is justified by the fact that any quantity characterizing

the operation of an elastic tensometric element must be metrological in nature.
Therefore, we have

I’ =max[I.

Let ¥I' be the point of the largest value of I. This point may be found
either within the interval

e Sxp<Cx,

m
in which the measurements are performed, or at the boundary of this interval
in the case x = )‘Xm' The coefficient A is determined by the dependence

X
A= 2E
X -

where X represents the scale division, beginning at which the measurement may

be made (most frequently A = 0.1);
X, - limiting load.
Thus, we have

i g (g1 — 0g2) 9q () (III.46)

cxXp

The following represents an estimate of this quantity, obtained on the
basis of experimental data

S‘ (ag1— a42) g (*r) (I11.47)
1—=:< e q_l_ o -,

C)Cr

In order to determine the accuracy and reliability of determining T'*, let
us formulate the confidence interval of the quantity T .

Due to the fact that the difference

Z [(aql - A1) — (aga— ag2)] - Pq (xr)
I —r—_9!__ -

cxXp ’

is a linear combination of statictically independent quantities having a normal
distribution, this difference has a normal distribution with the center at zero

and the dispersion

DI+ —
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In this expression it is assumed that the readings are made for one &mnd the
same values in the case of loading and unloading, and for each value of X the

number of experimental points is identical both for loading and unloading. Nor-
wlizing the difference I'*'— I', we obtain the quantity

C-Xp

=(*—1T). ——
Va2 . ‘?q(tf)

/S

which has a normal distribution with the parameters 0 and 1. Employing the ex-
pressions (II1.42) and (I11.48) for the quantities V and Z, and also the theorem
given above, we may find the desired criterion

(ITI.48)

(ITI.49)

—_ i=1
e e e =

n

s -
A 9
xm )‘>h(m (o8P =¥ 2)? 4 (P — v,,)7)

which has the Student distribution with 2 (Zk - 1) degrees of freedom. In the /
i=1"
case of equally accurate measurements, for k = k = const we obtain the following

condition

. cx, Vk (fn—1)
tr:'—(l——[') - r —_— ">

b 2y )
N\ \i ‘Pq(xf)

1 > y “n"q’z(xa )

i=1

o=t (I11.50)
exp V ok (en—1)

<Y 35 v p-ng)

which has the Student distribution with 2(kn - 7) degrees of freedom. This con-

dition makes it possible to formulate the confidence interval for the quantity
T.

>

hva

i

Defining the confidence probability vy and determining the quantity tY based
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on the tables of y-percentile limits for the Student distribution, we obtain

Ti—ts, <T'<I*+1ig;

b?
where s, is the inverse value of the factor for the difference(T*'— T) in ex-

b
pression (III.50).

Let us continue the numerical example given in the preceding section. Let
us determine whether hysteresis exists in the elastic element, for which test
data were given in Table 2, All of the quantities necessary to calculate the
experimental value of F according to formula (III.43) are obtained by calculating
the analytical relationships in the case of unloading and loading, which was
done in the preceding section.

Postulating the zero hypothesis, i.e., assuming that
Ay =, q=1,2,3,

and also taking the fact into account that the measurements are equally accurate
and that ki = const = 3, we obtain the experimental value of the F condition on

the basis of formula (III.44):
3 5
®
e [(aql - aq2)2 E ‘9?1 (xi)jl
F = g=11T =1 .
5
RN
2y 2 [ =70+ (6 — vs,)?]
i=1 j=1 )
— {0,907 -220 4 (0,302 937 + (0,098 4818 1 1 38,
959,6

13(B-5—3) _

We must now determine which region this value of F enters: in the critical /180
region, or in the region of permissible values. Let us define the condition of
significance r = 0,1, and let us determine the right critical point from the
table of 5% right critical values of F (Ref. 3) for 7 = 3 and 2 (nk - 1) = 24
degrees of freedom:

Fy==3,01.

In the numerical examples given above, the 5% probability is used as the
basis. Since the value of 2,57 right critical points is absent in the table
given in (Ref. 3), resorting to linear interpolation, we obtain

F,~4,08.

It may thus be seen that the obtained value of the F condition falls within
the critical region not only for a 10% level of significance, but also for a 5%
level of significance. It follows from this that we must reject the hypothesis
of the absence of hysteresis. In other words, we must assume that under the
conditions of the given experiment we cannot disregard hysteresis.

Hysteresis of an elastic element is a source of systematic error. In addi-

tion, the extent of hysteresis may be used to determine the suitability of the
elastic element arrangement being studied. Therefore, let us determine the
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coefficient T characterizing hysteresis. The estimate of the quantity NI, deter-
mined by formula (III.45) with allowance for expressions (IT11.25), (III.26), and
(I1I.28) for the system of functions selected in this example, acquires the fol-
lowing form
(@11 —ap) x + (a5, — Ag9) (%2 -+ byx) (as1 — agy) X
= X I8+ by (4 b,3) 4 byr) (1I1.51)
x T

Since we must determine no more than two significant digits for the coef-
ficient T'*, we may confine ourselves to an approximate value of the proportion—
ality coefficient ¢ in expression (III.51), assuming for this purpose, for ex-
ample, the coefficient for the linear part of formula (III.34) or formulas
(III.36). The method of determining the coefficient ¢, based on the theory of
the Chebyshev approximation, will be given in a following section. The precise
value determined from this method is ¢ = 5017.74, and differs from the coef-
ficients for the linear parts of expressions (III.34) and (III.36) only in the
fourth decimal place.

Substituting the numerical values of all the coefficients in formula (III.51),
we obtain
0,91x — 0,36 (x* — 8,18x) — 0,098 [x3 — 14,35 (x* — 8,18%) —71,2%]
I === T e i (II1.52)

In order to use formula (TII.47) to determine the coefficient T'*, we must /181
find the point xp of the largest value of I*. The condition
dair* =0
dx

yields the equation
—0,36—2.0,098 - x 40,098 - 14,35 =0,
from which we have X = 5.36. Substituting this wvalue in (III.52), we find
Hi‘= 0.00042, Setting A = 0.2, we obtain the following value of II*'at the bound-
ary of the interval for X, = Axm = 0,2°10 = 2
T2 = 0,00021,

Comparing the values of Hi'and H;; we finally obtain

x.=5,36; I*=0,00042 = 0,0429%.
Let us formulate the 95 percent confidence interval for I'. Omitting de-
tailed calculations, we shall give the final value of the confidence interval

0,00017 << I < 0,00065.

The obtained value of T'*'= 0,042%, which is a systematic error, may be an
important quantity for accurate force measuring devices —- comprising, for ex-
ample, almost half of the scale division for a scale with 1000 divisions. 1In
order to eliminate this error, we may employ curves which have been calibrated
separately for loading and unloading.
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4, Determining the Nonlinearity Coefficient

Chapter II introduced the concept of the nonlinearity coefficient, a quantity
characterizing the deviation of the force measuring device readings from the
linear dependence. The largest relative divergence between the curve charac-
terizing the dependence of the quantity being measured on the output signal and
between the straight line approximating it in the best manner (which represents
the equation of the device scale) was assumed to be the nonlinearity coefficient.

Condition (II.4), from which the nonlinearity coefficient m is determined,
acquires the following form in the notation employed in this chapter:

(I11.53)

m = min inax , A, <<x <X,

[4

y(x) —cx
[

where A is, just as previously, the section of the scale at which measurements
may be initiated, and x is the maximum load.

It follows from Part 1, Chapter II, that it is impossible to give the for- /18
mulas in a general form for determining the nonlinearity coefficient m and the
proportionality coefficient c¢, since each in specific case it is necessary to study
the form of the curve (See Figure 63). Therefore, let us derive these quantities
for the two cases which are most important in practice of approximating the ex-
perimental dependence by means of polynomials of the second and third degrees.

The metrological nature of employing an elastic tensometric element always leads
to a very small nonlinearity, as was indicated above, which is in essence a
systematic error, and polynomials of higher degree are seldom used.

Taking the small nonlinearity into account, we may show that the satisfying
of condition (III.53) for the case of polynomials of the second and third de-
gree leads to the largest deviations at the ends of the interval (Axm,xm).

In the first case, the parabolic relationship

III.54
Y= ayx + oy (2 + bx) = (o, + 4,6) x +- a2 ( )

must be approximated in the best way (in the sense given above) by the following

linear relationship
Yy =cx. (II1.55)

Employing formulas (III.54) and (III.55) we may find the expression for the
relative deviation

Y= _ oyHFap—c a,.
AR =S5 ==+ (I11.56)

Satisfying condition (III.53), we obtain the following system of equations
for determining the coefficients c¢ and m:

o +ab—c o .
N
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==

from which we have
¢ == 2t b) oy (142 x,
2

|
o .
_22_ (1 _7\) L } (III .57)

m=

al']‘azb—l‘_;i(l—l—k) Xn ) ]

We must point out the following. When the nonlinearity coefficient is de-
termined (just as when the error in general is determined), the first, no more
than two, significant digits are always important. Computations have shown
that allowance for the two last terms contained in the denominator only yields
a correction in the third significant digit for the quantity m. This fact is
also due to the small nonlinearity of elastic tensometric elements. On this
basis, the nonlinearity coefficient equals

(1 —2) 2% L 92

m = .
2 ay

A further simplification, leading to linearization of the quantity m, con-
sists of replacing the coefficient ey by its estimate a; obtained from experi-

ments. The accuracy of this substitution may be illustrated by means of confi-
dence intervals for the quantities o and %y obtained in the numerical ex-

ample given in Part 2, Chapter IIT

_ (=N
2ay

(I11.58)

The theoretical value of the coefficient m is estimated from experiment
by the quantity

* __ (I —Nxn
me= g (111.59)

Normalizing the difference m* - m, we obtain

,.j a? (x ) (*2)

z= (m*—m)- - (l—x)x,,, —

which has normal distribution with the parameters O and 1. Employing this quan-
tity, as well as expression (III.15), and taking the dependence (III.3) into

& -
account, we obtain the condition tm =2~ & ,n the basis of the theorem pre-

sented in Part 2, Chapter III

1
(=)t 4/ 1g (x)

V siiey S

(15— Y)?
(I11.60)

Sm -

/183
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n
which has the Student distribution with X ki - 2 degrees of freedom, and ¢2(x) =
xZ + bx. i=1

The condition obtained enables us to formulate the confidence interval for
the nonlinearity coefficient. For the given confidence probability vy, we obtain
m* —1.‘T C S, < m <l mF+ th,,,.
Let us turn to the second of the cases under consideration. We must approxi- /18
mate the polynomial of the third degree by means of the linear dependence (III.55)
Y=oy 0y (87 4 byx) + 0 [x3 - by (22 - byx) + byx] =

III.61
= (o3 + 05by A a3byiby -+ agbs) x + (o5 4 03b,) 12 - agx®. ( ‘
On the basis of formulas (III.55) and (III.61), the relative deviation has
the form
N Y= o “’-2]’3_:[:9‘3"1{’:{\_"[‘7“3[)3.* €, Uyt oghy 43 o
Ap) == = Pl B R A a

Condition (III.53) is satisfied by the following system of equations
A ()JC,,,) = —m,
A(xy) = +m.
Solving this system with respect to ¢ and m and, just as in the preceding

case, discarding terms which are small as compared to the coefficient oy in the
denominator of m, we obtain

1
=5 [(ea F23b,) (1 + 0 %, - o (1 22 22 4

+ 2(0y 4 230, - agby by 4 wby)]; (I11.62)
— (l—}\)x,,, bz(l——-}\)x-_*_(]__)\Q)xg
m=——="" - T m ' m
2o ot 22 T % },

Linearization of the coefficient m yields

m= _iL::llfﬂ‘Aaz_F by (1 =N 5, + (12952

20, 2a; T %
The experimental value of m has the following form
. 1—2) %, by (1 — N %, + (1 —2%) 52
m* — _(_._5%”11 a, 4 2T 12a1 n 5. (III.63)
On the basis of these two equations, we may formulate the following rela-
tionship .
Gy e = (@) F (0 (4 2] (@ — o).
e

The right hand side of this formula represents a linear combination of the
quantities (a2 - az) and (a3 - 3)which have a normal distribution.

Consequently, the quantity
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N | I

*—m . 2a;

1 - )\ » T A == corTo .

IEEE 4 Lo+ (T4 - 5yl
n
N

Z (a2 () ,121 oy 2D
=1
has a normal distribution with the center at zero and dispersion equal to 1. /185

Employing the same line of reasoning as before, we obtain the following con-
dition

n

QO
(m*—m)2-a; >‘ ky—1
i = - i=}

E@%qg(xi) gé%(pg(xi) (I11.64)
nok
X I’/:/:; Z (v —Y2,

i=1 j=1

which has the Student distribution with Z k - 1 degrees of freedom., The func-
1—1
tions ¢2(x) and ¢3(x) are determined according to formulas (III.26) and (III.28).

Introducing the following notation

(F—2) xp +'[ﬁ2+(!+>\)x’"]2 %
Z Yk
= g(x) Jg x) ?3( )
u/>124 (g — Y

l_l]=l

m T
QGIE/ Z kl'_"
i=1

and defining the reliability r, we may formulate the confidence interval
m* '~ ty-sm<m<m*'+ tY~sm on the basis of condition tm.

(I11.65)

Let us give a numerical example. Let us employ the results derived from
an experimental study of an elastic element as the initial data. These results
were analyzed in the preceding sections. Verifying the zero hypothesis, we
arrive at the conclusion that the difference between the loading and unloading
curves is so great that it cannot be explained only by measurement errors. Con-
sequently, we must reach the conclusion of a large quantity. This means that
the experimental data pertaining to loading and unloading must be processed
separately, although the possibility is not excluded of employing a single
calibration graph, or a single scale, if the requirements on the equipment
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accuracy are such that the systematic error produced by hysteresis represents a [18¢
small portion of the total permissible error.

Let us determine the nonlinearity coefficient m*' for the loading curve.
Assuming that A = 0.2 and substituting the value of the coefficients (III.33) in
formula (III.63), we obtain mi‘Z 0.00051 = 0.051%.

Let us formulate the confidence interval characterizing the accuracy and
reliability of this determination. Based on formula (III.65), we may deter-
mine the value of S;1° Taking the fact into account that ki = const = 3, we

b —2) xn n ! + [ba ”]; a4+ xm]-a <
Z 93 (%) Z o3 (*)
=1

obtain

" ok
X Z Z (95— Y2

Sy = —————— i=li=1

2ay Vk (k- n—1

, 1 — 1425 41,2 10]2 . ,—
0,8-10‘{/—93—7-}-L—-+’ P Vs

. s . =0,000107.
2.5024-Y/3(3-5—3) :

For 3*5 - 3 = 12 degrees of freedom, from the Student distribution tables
we obtain the 5% limit tY = 2,179.

Finally, the 95% confidence interval for the nonlinearity coefficient is
0.027% < m < 0.075%.

Formula (III.62) yields the following value of the proportionality coef-
ficient c¢ = 5017.74.

Performing similar calculations, we may determine the nonlinearity coeffi-
cient m, for the unloading curve. Omitting the details, we arrive at the
final result

my = 0,061%; 0,026% <m < 0,096%.

5. Comments on the Accuracy of Force Measuring Devices

Measurement errors may be divided into systematic errors and random errors.
If the scale of the device is not unusual —— or, for example, if there is no
calibration graph —— then the nonlinearity and hysteresis examined above lead
to a systematic error. There are methods of eliminating the systematic errors. /187
Therefore, when studying the accuracy of force measuring devices, we shall only
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take into account the random errors or, as they are called, the measurement
errors. The calculation of equipment accuracy, based on a normal distribution,
is discussed in the fundamental study (Ref. 9).

Let us determine the accuracy of a force measuring device when there is a
small number of experimental data.

Let us assume that the unknown reading ng of the force measuring device

corresponds to any value of the independent variable. In actuality, the reading,
which is obtained during the calibration and which is an estimate of ngs is yij’

where the indices have the same meaning employed in the entire chapter. Just

as previously, we shall assume that the measurement errors 6ij = yij - n; are

independent, have normal distribution, and have a mathematical expectation equal
to zero and a standard deviation o(xi). We shall assume that the measurements

are not equally accurate, and o(xi) = cog(xi), where g(x) is the unknown function.

The maximum possible deviation from the accurate reading, expressed in per-
cents, is usually employed to determine the accuracy of force measuring devices.
Less frequently, the deviation pertains to the upper limits of the device scale.
This means that, if allowance is made for the assumption advanced above regarding
the distribution of measurement errors according to a normal law, the device
accuracy is characterized by the width of the confidence interval. The value of
the confidence probability is established by means of the principle of practical
reliability.

On the basis of the assumptions advanced above, the following quantity

g T (I11.66)
s a (%))

has normal distribution with the center at zero and dispersion equal to unity.
Determining the y-percentile limit zY for the normal distribution, we find that

the inequality —zYo(xi)<yij-ni<zY-c(xi) holds for the probability vy.

In this case, the accuracy of the readings for any value of X, is deter-

mined by the quantity
. X,
T o= %y .G (J»)—.
i

The accuracy of a force measuring device is customarily expressed by the
largest value of T

2 by)

=0

(I11.67)

where Xp is the point of the maximum of T.

However, the quantity TT is always unknown, and it is determined during /188
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calibration with a small number of measurements. In order to obtain the working

farmula, we should note that the quantity

§:’ ﬁ] a2 (lxl.) (yii - .‘7:)2

(111.68)

has the xz—dlstrlbution with Z k‘- n degrees of freedom. The value of ?& con-

i=1*

tained in expression (III.68) is determined by formula (III.10). Taking into
account the expressions (III.66) and (III.68), on the basis of the theorem

given in Part 2, Chapter III, we obtain the following condition

{v1j — i) 3/2‘ ky—n
t—l

. :
g6 E«izgzm(’” o

which has the Student distribution with Z k - n degrees of freedom.
i=1"

mination of TT is now given by the following formula
L‘ kl 1 -
1.8 (*7) }*—*‘E m (i — y1)?
F/Z ki—n

The deter~

(I1I.67')

Instead of Nps its estimate ?& is substituted in the denominator of this

expression. This substitution is absolutely permissible, since it is sufficient
to determine no more than the two first significant digits when determining the

equipment accuracy.

The necessity was pointed out above of processing the test results during
loading and unloading, due to the occurrence of hysteresis. However, in this
case when determining the equipment accuracy, we may employ the information-
obtained from experiment both for unloading and loading. For this purpose, we

should note that the condition

(./1]_711) M(}l ky —ll)

o [ = T+ (o =307

n
has the Student distribution with 2 (Zki - n) degrees of freedom. Just as

i="1

above, the indices (1) and (2) indicate whether the quantities pertain to
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loading or unloading, respectively. We obtain
[ ll“1 \kl 1 V -
. NY_ b o =y 2) _ —2)\2 I11.68'
%bﬁy Ehgywuﬁ_ﬁn+@&7#” ( ‘

n
—'J_T !/2 (Z ey — )
i=1

It may be seen from this expression that in the case of equally accurate
measurements we must use the initial point Axm of the measurement interval as

.
°r

the quantity Xpe

Let us demonstrate with a numerical example. We may derive the data for
the calculation from the example examined above. Since the measurements are
equally accurate, formula (I11.68) acquires the following form, with allow-
ance for g(x) = 1 and ki = const = k

n Tk ' T
7 URN P (2) __7(n)2
o) 2 L ) ()] (IT1.69)
T = - =hp=1 [ —
T T/TVQ (nk —n)
For 2(nk - n) = 20 degrees of freedom, setting the confidence probability
Yy = 0.999, we obtain tY = 3,85, The maximum value of the quantity T¥ 'will

T
occur at the beginning of the interval for xT=Axm = 2, Substituting all the
numerical values in expression (III.69), we obtain
T; = 0,0026.

Thus, for the given reliability 0.999, the maximum error of a force mea-
suring device is 0.26%.

Sometimes the accuracy of the weights is determined by relating the erroxr
to the upper measurement limit. In our case, for x = x = 0 the quantity

Ip = 50243.3, and based on formula (III.69), we obtain
T# — 0,00055 = 0,055%.

The nonlinearity coefficient m*'= 0.051% and the magnitude of hysteresis
I'*'= 0.042% were obtained above. We thus find that the systematic error pro-
duced by hysteresis and the nonlinearity is commensurate with random measure-
ment errors. Consequently, they cannot be neglected.
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“The aeronantical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and ihe results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958
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Details on the availability of these publications may be obtained from:
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